期刊文献+

多分类器系统的泛组合规则研究与应用 被引量:1

Research and application of universal combination rule of multiple classifiers system
下载PDF
导出
摘要 现有的多分类器系统采用固定的组合算子,适用性较差。将泛逻辑的柔性化思想引入多分类器系统中,应用泛组合运算模型建立了泛组合规则。泛组合规则采用遗传算法进行参数估计,对并行结构的多分类器系统具有良好的适用性。在时间序列数据集上的分类实验结果表明,泛组合规则的分类性能优于乘积规则、均值规则、中值规则、最大规则、最小规则、投票规则等固定组合规则。 The combination operators of multiple classifiers system are fixed combination operator with relatively poor serviceability. The idea of flexibility of universal logic theory is introduced in multiple classifiers system, and a universal combination rule based on universal combination operation model is proposed. Universal combination rule is suitable to multiple classifiers system with parallel structure. Then genetic algorithm is used to estimate pa- rameters of universal combination rule. The experimental results on time series datasets show that the classification performance of universal combination rule is better than that of fixed combination rules, which are product rule, mean rule. median rule, max rule, min rule and majority vote rule.
出处 《计算机工程与应用》 CSCD 2012年第17期48-52,共5页 Computer Engineering and Applications
基金 西安科技大学博士基金(No.A5030606) 西北工业大学基础研究基金(No.W018101)
关键词 泛组合规则 多分类器系统 泛组合运算模型 遗传算法 universal combination rule multiple classifiers system universal combination operation model geneticalgorithm
  • 相关文献

参考文献12

  • 1Kittler J, Hatef M, Duin R P W, et al.On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(3) :226-239.
  • 2Kunchev L I.Combining pattern classifiers: methods and algorithms[M].Hoboken, NJ: Wiley, 2004.
  • 3Duin R P W, Tax D M J.Experiments with classifier combining rules[C]//Proceedings of 1st International Workshop on Multiple Classifier System, Cagliari, Italy, 2000 : 16-29.
  • 4Bell D A, Guan J W, Bi Yaxin.On combining classifier mass functions for text categorization[J].IEEE Transactions on Knowledge and Data Engineering, 2005, 17(10) : 1307-1319.
  • 5Lv Xiaoguang,Wang Yunhong,Jain A K.Combining classifiers for face recognition[C]//IEEE International Conference on Multimedia & Expo,Baltimore,2003: 13-16.
  • 6Halberstadt A K.Heterogeneous acoustic measurements and multiple classifiers for speech recognition[D].Massachusetts : MIT, 1998.
  • 7Dietrich C, Schwenker F, Palm G.Classification of time series utilizing temporal and decision fusion[C]//Proceedings of Multiple Classifier Systems(MCS), Cambridge, 2001 : 378-387.
  • 8杨利英,覃征,王卫红.多分类器融合系统设计与应用[J].计算机工程,2005,31(5):175-177. 被引量:6
  • 9贾澎涛,何华灿.泛组合运算模型研究[J].计算机科学,2010,37(10):175-180. 被引量:3
  • 10He H C, Wang H.Principle of universal logic[M].Beijing: Science Press, 2005.

二级参考文献29

  • 1金翊,何华灿,吕养天.Ternary optical computer principle[J].Science in China(Series F),2003,46(2):145-150. 被引量:35
  • 2王万森,何华灿.基于泛逻辑学的逻辑关系柔性化研究[J].软件学报,2005,16(5):754-760. 被引量:15
  • 3Huang Y S, Suen C Y. A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17:90-94.
  • 4Sharkey A J C, Sharkey N E, Gereckc U, et at. The "Test and Select"Approach to Ensemble Combination[A]. Kittlcr J, Roli F(Eds.).Multiple Classifier Systems[C]. LNCS 1857, Springer-Vcrlag, 2000:30-44.
  • 5Suen C Y, Nadal C, Mai T A, et al. Recognition of Totally Unconstrained Handwriting Numerals Based on the Concept of Multiple Experts [A]. Suen C Y(Eds.).Frontiers in Handwriting Recognition[C].Montreal, Canada: International Workshop on Frontiers in Handwriting Recognition, 1990:131-143.
  • 6Latinne P, Debeir O, Decaestecker C. Combining Different Methods and Numbers of Weak Decision Trees[J]. Pattern Analysis & Applications, 2002,5:201-209.
  • 7Roli F, Giacinto G. Design of Multiple Classifier Systems. Bunke H,Kandel A(Eds.). Hybrid Methods in Pattern Recognition[M]. World Scientific Publishing, 2002:199-226.
  • 8Ho T K. Complexity of Classification Problems and Comparative Advantages of Combined Classifiers[A]. Kittler J, Roli F(Eds.).Multiple Classifier Systems[C]. LNCS 1857, Springer-Verlag, 2000:97-106.
  • 9Krogh A, Vedelsby J. Neural Network Ensembles, Cross Validation Active Learning[A]. Tesauro G, Touretzky D, Leen T(Eds.). Advances in Neural Information Processing Systems[C]. Cambridge, MA: MIT Press, 1995, 7:231-238.
  • 10Breiman L. Bagging Predictors[J]. Machine Leaming, 1996,24:123-140.

共引文献7

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部