摘要
为改善球扁药的燃烧性能,根据燃面渐增原理,设计出了一种具有微孔结构的球扁药,并采用超临界流体技术升温发泡工艺制备出该结构的球扁药,分析了发泡过程中的泡孔的成核和长大机理;研究了CO2含量和粒子对泡孔形貌的影响。扫描电镜(SEM)结果显示,微孔球扁药内部泡孔是独立的闭孔泡,粒子可以改变泡孔的形貌,随着CO2在球扁药中含量的降低,平均泡孔直径变小。密闭爆发器试验表明,该微孔发射药具有良好的燃烧渐增性能。因此,利用超临界流体技术可以制备出不同泡孔形貌和燃烧性能的微孔球扁药。
The microfoam oblate spherical propellants were designed and prepared in temperature-rising progress by supercritical fluids technique in order to improve their burning performance based on progressive burning surfaces theory and the mechanisms of foam nucleation and growth in the foaming progress were discussed.The effects of the contents of CO2 and particles on foam morphology were investigated.Scanning electron microscope(SEM) results showed that foams in microfoam oblate spherical propellants were closed and isolated,foam morphology can be changed by particle and the mean foam diameter became small as the contents of CO2 in oblate spherical propellants decreasing.The closed bomb tests indicated that these microfoam oblate spherical propellants showed progressive burning performance.Therefore the microfoam oblate spherical propellants with different foam morphology and burning performance can be achieved by supercritical fluids technique.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2012年第5期534-539,共6页
Acta Armamentarii
关键词
应用化学
超临界CO2
微孔球扁药
溶解度
燃烧渐增性
applied chemistry
supercritical CO2
microfoam oblate spherical propellants
solubility
progressive combustion