期刊文献+

参考节点嵌入最短距离估算在图聚类中的应用

Application of shortest distance estimation based on reference node embedding in graph clustering
下载PDF
导出
摘要 为解决社会关系网络图中节点没有坐标值、不能采用传统的欧几里得距离和曼哈坦距离进行聚类的问题,提出采用最短路径算法,来衡量点与点之间的相异度。针对最短路径算法具有时间复杂度大的缺点,引入基于参考节点嵌入的最短距离估算思想来估算两点之间的近似距离。在此基础上,针对DBLP数据集构成的社会关系网络图进行聚类,使用基于划分的k-medoids算法,分别采用以上两种距离算法,比较其优劣。实验证明改进后的算法和最短路径算法中的Dijkstra算法相比,距离误差率小,时间复杂度大大降低,在提高效率的同时,取得了同样好的聚类效果。 To deal with the problem that Euclidean distance or Manhattan distance cannot be used in graph clustering algorithm,because the vertices in a social network have no coordinates,shortest path algorithm is proposed,which is used to measure the dissimilarity between the vertices.Firstly,aiming at the problem of shortest path algorithm having big time complexity shortcoming,the idea of shortest distance estimation based on reference node embedding is introduced to estimate the approximate distance between two vertices.On that basis,K-medoids of partition-based graph clustering algorithm is applied to partition the social network extracted from the DBLP data into different subgraph,the above two distance algorithms are used to compare their advantages and disadvantages.In view of improved algorithm compared with shortest path algorithm such as Dijkstra,experimental results demonstrate that distance error rate is small,the time complexity is reduced greatly,the same good effect of clustering is archived at the time of improving efficiency.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第6期2300-2304,共5页 Computer Engineering and Design
基金 广东省自然科学基金项目(10152800001000029)
关键词 图聚类 社会关系网络 k-medoids算法 最短路径算法 参考节点嵌入 graph clustering social network k-medoids algorithm shortest path algorithm reference node embedding
  • 相关文献

参考文献15

  • 1Venu Satuluri, Srinivasan Parthasarathy. Scalable graph clustering using stochastic flows: Applications to community discovery [C]. Paris, France : Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 737-746.
  • 2XU Xiaowei, Nurcan Yuruk, FENG Zhidan, et al. SCAN: A structural clustering algorithm for networks [C]. San Jose, CA, USA: Proceedings of the 13th ACM SIGKDD Internatio- nal Conference on Knowledge Discovery and Data Mining, 2007 : 824-833.
  • 3张健沛,杨悦,杨静,张泽宝.基于最优划分的K-Means初始聚类中心选取算法[J].系统仿真学报,2009,21(9):2586-2590. 被引量:62
  • 4Graph clustering based on structural/attribute similarities [C]. Lyon, France: Proceedings of the VLDB Endowment, 2009: 718-729.
  • 5Goldberg A V, Harrelson C. Computing the shortest path: A search meets graphs theory [C]. Vancouver, Canada: Procee- dings of the Sixteenth Annual ACM-SIAM Symposium on Dis- crete Algorithms, 2005: 156-165.
  • 6Potamias M, Bonchi F, Castillo C, et al. Fast shortest path dis- tance estimation in large networks [C]. Hong Kong: Proceed-ings of the 18th ACM Conference on Information and Knowledge Management, 2009: 867-876.
  • 7Gubichev A, Bedathur S, Seufert S, et al Fast and accurate estima- tion of shortest paths in large graphs [C]. Toronto, Canada: Pro- ceedings of the 19th ACM International Conference on Information and Knowledge Managernent, 2010: 499-508.
  • 8Sarma A D, Gollapudi S, Najork M, et al. A sketch-based dis- tance oracle for web-scale graphs [C]. New York, NY, USA: Proceedings of the Third ACM International Conference on Web Search and Data Mining, 2010: 401-410.
  • 9Rattigan M J, Maier M, Jensen D. Using structure indices for efficient approximation of network properties [C]. Philadel- phia, PA, USA: Proceedings of the 12th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining, 2006: 357-366.
  • 10Kriegel H P, Kr? oger P, Renz M, et al. Hierarchical graph embedding for efficient query processing in very large traffic networks [C]. Hong Kong: Proceedings of the 20th Interna- tional Conference on Scientific and Statistical Database Manage- ment, 2008: 150-167.

二级参考文献12

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部