期刊文献+

混合差分进化算法 被引量:1

Hybrid differential evolution algorithm
下载PDF
导出
摘要 为了克服差分进化算法容易出现早熟和收敛速度慢的问题,提出了一种混合差分进化算法。该算法在趋药性差分进化算法(CDE)的基础上,通过对较优个体进行变异操作,维护了种群多样性、避免早熟;通过将较差的个体与较优个体进行杂交,提高了开采能力、加快了收敛速度。基于这两种策略,算法的开采能力与探索能力达到了平衡。用该算法解决标准函数优化问题,并将仿真结果与其他算法进行比较,数值结果表明该文算法具有较快的收敛速度和很强的跳出局部最优的能力。 To overcome the problems of premature convergence frequently appeared in differential evolution(DE) and its poor convergence,a hybrid differential evolution is proposed.Based on the chemotactic differential evolution algorithm,a mutation operation is added to the better individuals to keep the diversity and avoid the premature convergence,and a crossover operation is added to the worse individuals to increase the exploitation and enhance convergence rate.Due to the two strategies,the exploration and exploitation of the algorithm can be well balanced.Finally,a suite of 12 benchmark functions is used to verify the proposed algorithm and the result of simulation,which is compared to other well-known algorithms,indicates the proposed approach is shown to have better convergence rate and great capability of preventing premature convergence.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第6期2446-2450,共5页 Computer Engineering and Design
关键词 差分进化算法 趋药性差分进化算法 杂交操作 变异操作 早熟 differential evolution algorithm chemotactic differential evolution algorithm crossover operation mutation operation premature convergence
  • 相关文献

参考文献16

  • 1Stron R, Price tC Differential evolution: A survey of the state-of- the-art [J]. IEEE Transaction on Evolutionary Computation, 2011, 15 (1): 4-31.
  • 2Babu B B, Chakole P G, Mubeen J H S, Differential evolution strategy for optimal design of gas transmission network[J]. Journal of Multidiseiplinary Modeling in Materials and Struc-tures, 2005, 1 (4): 315-328.
  • 3Onwubolu G, IMvendra D. Scheduling flow shops using differential evolution algorithm [ J]. European Journal of Operational Research, 2006, 171 (2): 674-692.
  • 4宁桂英,周永权.一类求解方程全部根的改进差分进化算法[J].计算机工程与设计,2008,29(12):3173-3176. 被引量:1
  • 5WANG Y, CAI Z X, ZHANG Q E Differential evolution with composite trial vector generation strategies and control parame- ters [J]. IEEE Transaction on Evolutionary Computation, 2011, 15 (1): 55-66.
  • 6Ali M M. Differential evolution with preferential crossover [J]. European Journal of Operational Research, 2007, 181 (3) 1137-1147.
  • 7GONG W Y, CAI Z H, JIANG L X. Enhandng the performance of differential evolution using orthogonal design method [J]. Applied Mathematics and Computation, 2008, 206 (1): 56-69.
  • 8Ali M M, Kajee-Bagdadi Z A local exploration-based differential evolution algorithm for constrained global optimization [J]. Applied Mathematics and Computation, 2009, 208 (1): 31-48.
  • 9Arijit B, Sambarta D, Swagatarn D, et al. A synergy of differential evolution and bacterial foraging algorithm for global optimization [J]. Neural Network World, 2007, 17 (6) : 607-626.
  • 10ZHANG J Q, Sanderson A C. JADE: Adaptive differential evolution with optional external archive [J]. IEEE Transac- tion on Evolutionary Computation, 2009, 13 (5)I 945-958.

二级参考文献7

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部