期刊文献+

微梁无耗散弛豫动态过程分析及仿真

Analysis and simulation of micro-beam non-dissipative relaxation dynamic process
下载PDF
导出
摘要 为探讨微机电系统中梁结构无耗散弛豫动力学特性,基于Euler-Bernoulli梁方程,引入两端绞紧梁边界条件,推导梁挠度无耗散弛豫理论表达式,并给出梁挠度振幅分布以及弛豫周期内挠度动态Maple算例。对微梁无耗散弛豫过程进行有限元仿真,结果表明,弛豫仿真周期与理论计算相符,梁挠度振幅仿真分布与算例有差异,大挠度弛豫振幅与初始挠度仿真比值与理论相差较大。 In order to explore characteristics of micro-beam non-dissipative relaxation dynamics of MEMS, the beam non-dissipative deflection relaxation expression was educed based on EulerBernoulli equation with boundary conditions of two hinged ends. The deflection amplitude distribution and deflection dynamic process in a relaxation period were calculated by Maple. The finite element simulation data of micro-beam non-dissipative relaxation indicated that relaxation period was agreement with theoretical calculation, deflection amplitude distribution was differed from calculation example used Maple, the ratio of relaxation amplitude to initial deflection was quite a difference compared with theory result when micro-beam has large deflection
作者 王文芳
出处 《西安邮电学院学报》 2012年第3期78-81,85,共5页 Journal of Xi'an Institute of Posts and Telecommunications
关键词 Euler-Bernoulli方程 微梁 挠度 弛豫 Euler-Bernoulli equation, micro-beam, deflection, relaxation
  • 相关文献

参考文献10

二级参考文献32

  • 1朱纯章.悬臂压电梁自由端受集中力的解析解[J].南京工程学院学报(社会科学版),2001,2(1):12-15. 被引量:10
  • 2丁皓江,王国庆,梁剑.压电介质平面问题的一般解和基本解[J].力学学报,1996,28(4):441-448. 被引量:18
  • 3Eringen C. Nonlocal Polar Field Models. New York: Academic Press, 1976.
  • 4Eringen C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J App1 Phys, 1983, 54(9): 4703--4710.
  • 5Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology. Int J Eng Sci, 2003, 41(3): 305-- 312.
  • 6Sudak L J. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys, 2003, 94(11): 7281-- 7287.
  • 7Zhang Y Q, Liu G R, Wang J S. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B, 2004, 70(20): 205430.
  • 8Wang Y, Ru C Q, Mioduchowski A. Free vibration of multiwall carbon nanotubes. J Appl Phys, 2005, 97(11): 114323.1--114323.11.
  • 9Wang L F, Hu H Y. Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B, 2005, 71:195412.
  • 10Wang Q, Liew K M. Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A, 2007, 363(3): 236--242.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部