期刊文献+

一种新的双模式神经网络盲均衡器设计与仿真

Design and Simulation on Novel Dual-Mode Neural Network Based Blind Equalizer
下载PDF
导出
摘要 在通信系统设计中,常采用盲均衡器来抑制带限信道导致的码间干扰。但传统的常数模算法(CMA)以及基于CMA的双模式算法对于多进制正交调幅信号(QAM)存在较大的误判,收敛后QAM系统性能较差等不足之处。在修正常模算法(MCMA)的基础上,针对QAM信号为多模信号的特点,采用多模算法(MMA)与修正判决引导算法(MDD)结合的双模式算法,并引入可准确模拟信道逆系统的多层感知机结构,得到了一种新的基于双模式算法的多层感知机结构神经网络盲均衡器,利用新算法调整神经网络参数,并且利用重置模块跟踪信道变化。仿真结果表明,新算法调整的神经网络盲均衡器双模式盲均衡器在稳态MSE、收敛性方面都有所提高,并具有抵抗信道突变的能力,为通信系统设计提供参考。 In modem communication system, blind equalizer is widely used to restrain the inter - symbol interfer- ence (ISI) caused by non- ideal character of channel. However, the traditional constant modulus algoIithm(CMA) and those dual -mode algorithms based on CMA often cause false estimation when it means to m -ray QAM signal. Thus, for the multi -modulus feature of m- ray QAM signals, based on modified constant modulus algorithm( MC- MA) , a new dual - mode with multi - modulus algorithm(MMA) and modified decision - directed algorithm(MDD) was adopted in the multilayer perception structure. The new equalizer adjusted the parameters with the new algorithm and used the reset device to track the burst channel. Results show that the new dual - mode blind equalizer based on neural network has fast convergence speed, lower steady - state MSE and the capability to track the burst channel.
出处 《计算机仿真》 CSCD 北大核心 2012年第6期188-191,198,共5页 Computer Simulation
基金 新疆维吾尔自治区自然科学基金资助项目(2011211A010)
关键词 盲均衡器 神经网络 多模算法 修正判决引导算法 正交幅度调制信号 Blind equalizer Neural network MMA MDD QAM signal
  • 相关文献

参考文献8

  • 1Y Sato. A method of self - recovering equalization for muhilevel amplitude modulation systems[ J]. IEEE Transactions on Communications, 1975,23(6) :679 -682.
  • 2D N Godard. Self - recovering equalization and carrier tracking in two -dimensional data communication systems[J]. IEEE Transactions on Communications, 1980,28 ( 11 ) : 1867 - 1875.
  • 3Kil Nam Oh and Yong Ohk Chin. New blind equalization techniques based on constant modulus algorithm [ C ]. IEEE Global Telecommunications conference, Singapore, 1980:865 - 869.
  • 4Cheolwoo You, Daesik Hong. Nonlinear Blind Equalization Schemes Using Complex Valued Multilayer Feed -forward Neural Networks[ J ]. IEEE Transactions on Neural Networks, 1998,9 (6) :1442 - 1455.
  • 5王峰,赵俊渭,李桂娟,马忠诚.一种常数模与判决导引相结合的盲均衡算法研究[J].通信学报,2002,23(6):104-109. 被引量:25
  • 6Seokho Yoon, Sang Won Choi and Jumi Lee. A novel blind equalizer based on dual - mode MCMA and DD algorithm[ C]. 6th Pacific Rim Conference on Multimedia, Korea, 2005:711 -722.
  • 7吕志胜,赖惠成.一种新的CMA神经网络均衡器[J].计算机工程与应用,2010,46(11):101-103. 被引量:1
  • 8薛伟,杨小牛,张朝阳.一种新的双模盲均衡算法[J].计算机仿真,2011,28(3):166-169. 被引量:4

二级参考文献20

  • 1邓晓红,张家树.复数Chebyshev神经网络在信道均衡中的应用[J].信号处理,2003,19(z1):281-284. 被引量:4
  • 2章兢,邹阿金,童调生.多项式基函数神经网络模型[J].湖南大学学报(自然科学版),1996,23(2):84-89. 被引量:21
  • 3赵海全,谢明元,曾祥萍,张家树.线性滤波器与多项式级联结构的自适应均衡器[J].计算机应用研究,2007,24(4):249-250. 被引量:2
  • 4Godard D N.Self-recovering equalization and carrier tracking in a two-dimensional data communication system[J].IEEE Trans on Commun,1980.COM-28:1867-1875.
  • 5Farhang-Boroujeny B.Multi-carrier modulation with blind detection capability using cosine modulated filterbanks[J].IEEE Trans on Commun,2003,51(12):2057-2070.
  • 6[1]Godard D N. Self-recovering equalization and carrier tracking in two-dimensional data communication systems[J]. IEEE Trans Commun, 1980, 28(11): 1867-1875.
  • 7[2]WEERACODY V, KASSAN A S. Dual-mode type algorithms for blind equalization [J]. IEEE Trans Commun, 1994,40(2): 22-28.
  • 8[3]LITWIN L R, ZOLTOWSKI M D, ENDERS T J. Blended CMA: smooth, adaptive transfer from CMA to DD-LMS [A]. IEEE Wireless communications and networking conference,1999, 797-800.
  • 9[4]JOHNSON R J R, SCHNITER P, ENDERS T J. Blind equalization using the constant modulus criterion: a review[J]. Proceedings of the IEEE, Oct 1998, 36(10): 1927-1949.
  • 10[5]Endres T J. Equalizing with fractionally-spaced constant modulus and second order statistics blind receivers[D].Ithaca, NY: Cornell University, 1997.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部