期刊文献+

基于马尔可夫随机场的显著区域检测

Visual Salient Objects Detection Based on MRF
下载PDF
导出
摘要 显著区域检测被应用在计算机视觉处理的各个方面,然而大目标和复杂背景中显著对象检测存在检测内容缺失和误检的问题。提出一种基于粗略显著区域的马尔可夫随机场(MRF)模型检测方法。首先,应用Harris角点检测定位粗略显著区域,去除边缘附近角点做凸包操作,然后基于粗略区域的先验概率,应用马尔可夫随机场模型检测图像显著区域。在图像测试库的实验结果显示,提出的检测方法提高了检测的准确度和完整度。 Salieny detection is utilized in many vision tasks in recent years. But parts of objects missing and detect false are still big issue when the object of image is huge or the background is complex. In this paper, we propose a new computational saliency dectection model which is implemented with a coarse to fine strategy under MRF frame- work. Firstly, saliency points based on Harris are applied to get a coarse location of the saliency region. And then, based on the rough region, we compute a prior map for the MRF to achieve the final sailent objects detection. Experimental results on a dataset show that the detected section based on the model is more accurate and complete.
出处 《苏州大学学报(工科版)》 CAS 2012年第3期15-20,共6页 Journal of Soochow University Engineering Science Edition (Bimonthly)
基金 国家自然科学基金资助项目(编号60970015 61003054 61170020) 江苏省省级现代服务业(软件产业)发展专项引导资金项目(编号[2009]332-64) 江苏省普通高校研究生科研创新计划项目(编号CXLX11_0072) 苏州大学科研预研基金项目
关键词 显著区域 目标检测 HARRIS角点 MRF 马尔可夫随机场 saliency object detection Harris MRF Markov random field
  • 相关文献

参考文献5

  • 1Zhou Qiang, Ma Limin, Celenk Mehmet, et al. Content-based image retrival based on ROI detection and relevance feedback[ J]. Multimedia tools and Applications, 2005 ( 27 ) :251 - 281.
  • 2ltti L Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ) :1 254 - 1 259.
  • 3Wahher D, hti L, Riesenhuber M, et al. Attentional selection for object recognition--a gentle way[ J ]. Lecture Notes in Computer Science, 2002, 2 525(1 ) :472 -479.
  • 4Joost van de Weijer, Theo Gevers, Andrew D Bagdanov. Boosting color saliency in image feature detection[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28( 1 ), 150 - 156.
  • 5李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64

二级参考文献50

  • 1Zhou W T,Song C Z.Image segmentation by data-driven markov chain monte carlo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):657 ~673.
  • 2Bouman C A,Shapiro M.A multiscale random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,1994,3(2):162 ~177.
  • 3Kam A H,Fitzgerald W J.General unsupervised multiscale segmentation of images[A].In:Proceedings of Conference Record of the Thirty-third Asilomar on Signals,Systems,and Computers[C],Pacific Grove,CA,USA,1999,1:63~67.
  • 4Laferte J M,Perez P,Heitz F.Discrete Markov image modeling and inference on the quadtree[J].IEEE Transactions on Image Processing,2000,9(3):390 ~404.
  • 5Choi H,Baraniuk R G.Multiscale image segmentation using waveletdomain hidden markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309 ~ 1321.
  • 6Sun J,Gu D,Zhang S,et al.Hidden markov bayesian texture segmentation using complex wavelet transform[J].IEE Proceedings Vision,Image and Signal Processing,2004,151(3):215 ~223.
  • 7Fan Guo-liang,Xia Xiang-gen.A joint multicontext and multiscale approach to Bayesian image segmentation[J].IEEE Tansactions on Geoscience and Remote Sensing,2001,39(12):2680 ~2688.
  • 8Srinivas C,Srinath M D.Compound Gauss Markov random field model for image segmentation and restoration[J].Acoustics,Speech,and Signal Processing,1989,3(23):1586 ~1589.
  • 9Zhang Y,Brady M,Smith S.Segmentation of Brain MR images through a hidden Markov random field model and the expectation maximization algorithm[J].IEEE Transactions on Medical Imaging,2001,20(1):45 ~47.
  • 10Wang J P.Stochnstic relaxation on partitions with connected components and its application to image segmentation[J].IEEE Transactions on Pattern anAlysis and Machine Intelligence,1998,20(6):619 ~636.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部