期刊文献+

基于NSCT-PCNN算法的雷达图像融合研究 被引量:3

Research of radar image fusion based on NSCT-PCNN algorithm
下载PDF
导出
摘要 为了提高雷达图像的融合质量,创新性地将非下采样Contourlet变换(NSCT)与脉冲耦合神经网络(PCNN)相结合,运用到可见光和红外雷达图像的融合中。先对待融合的两幅源图像进行NSCT分解,利用得到的低频子带系数去触发PCNN的神经元,最后进行NSCT重构,得到所需要的新图像。结果表明此方法较传统的融合方法,提高了信息量和清晰度,获得了较好的识别率。此方法得到的图像更有利于对流云形成时的预测。 In order to improve the quality of the radar image fusion, the method to combine Nonsubsample Contourlet Translation (NSCT) with Pulse Coupled Neural Network (PCNN) for visible and infrared radar image fusion is innovationally adopted. The process of this method is.. the two source images under fusion are decomposed by NSCT, then the low-frequency subband coefficient is utilized to trigger on PCNN neurons, and finally the image is reconstructed with NSCT to obtain a new required image. The results indicate that, compared with traditional fusion methods, this method has higher information ca- pacity, clarity and identification rate. The conclution is that the image got by this method is more advantageous to predict when the convective cloud is generated.
出处 《现代电子技术》 2012年第12期82-83,86,共3页 Modern Electronics Technique
基金 中国气象科学院灾害天气国家重点实验室开放课题(2008LASW-A02)
关键词 NSCT变换 PCNN相结合 雷达图像 对流云 预测 combination of NSCT transform and PCNN radar image convective cloud prediction
  • 相关文献

参考文献4

  • 1ECKHORN R, REIBOECK H J, ARNDT M, et al. Fea- ture linking via synchronization among distributed sssem- blies., simulation of results from cat cortex[J]. Neural Computation, 1900 (2):293-307.
  • 2CUNHA A I J, ZHOU J P, DO M N. The nonsubsampledcontourlet transform: theory, design and applications [J]. IEEE Trans. on Image Processing, 2006, 15 ( 10 ): 3089-3101.
  • 3RANGANATH H S, KUNTIMAD G. Iterative segmenta- tion using pulse coupled neural networks [J]. SPIE, 1996, 2760: 543-554.
  • 4佚名.基于多尺度几何分析的图像融合算法研究[D].青岛:中国海洋大学,2009.

同被引文献32

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部