期刊文献+

基于改进k-means聚类算法的入侵检测研究 被引量:1

Intrusion Detection Study Based on Improved K-means Clustering Algorithm
下载PDF
导出
摘要 提出了一种k-means改进算法,通过考虑样本密度、距离因素选择初始聚类中心,有效克服了经典k-means算法初始值敏感、收敛结果容易陷入局部最优解的缺点。同时引入变异系数法对样本的不同属性在聚类过程中所起的作用不同进行加权处理,全面反映了各个属性对聚类结果的影响程度。最后利用KDD Cup 1999数据集进行仿真实验,结果表明,改进算法有效地提高了入侵检测质量。 An improved K-means algorithm is presented in this paper.By considering both the sample density and the distance factor in initial cluster center selection,the sensitivity of the initial value from the traditional k-means is effectively overcame and the defect that convergence easily getting into local optimum is well solved.Meanwhile to fully reflect the clustering results of various attributes,the variation coefficient method which is greatly helpful in weighting various effects of sample-attribute is introduced in the clustering processing.And at last,the simulated experiments by data sets KDD Cup 1999 shows that the improved algorithm effectively raises the intrusion detection quality.
作者 梁腾 吴淑平
出处 《计算机安全》 2012年第6期2-5,共4页 Network & Computer Security
关键词 K-MEANS算法 聚类分析 变异系数法 入侵检测 K-means Algorithm; Clustering Analysis; Variation Coefficient Method; Intrusion Detection;
  • 相关文献

参考文献6

  • 1Patcha A, Parka d M. An Overview of Anomaly Detection Techn ques: Existing Solutions and Latest Technological Trends [J]. Computer Networks, 2007, 51(12):3448--3470.
  • 2Wuu L C, Hung C H, Chert S F. Building Intrusion Detection P&ttern Miner for Snort Network Intrusion Detection System [J]. Journa, I of System &nd Sofl;w&re, 2007, 80(10):1699-1715.
  • 3Sharma A, PujariA K, Paliwal K K, Intusion Detection Using Text Processing Techniques wi%h a KernelBased Similarity Measure [J]. Computer & Security, 2007, 26(7):488-495.
  • 4Portnoy L, Eskin E, Stoifo S d. Intrusion detection with unl&beled d&t& using clustering [A]. Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) [C] Philadelphia, PA, USA:ACM, 2001. 1-14.
  • 5秦寿康.综合评价原理与应用[M].北京:电子工业出版社,2005.
  • 6W. Lee, S. J. Stolfo and K. Mok. Data, Mining in Work Flow Environments: Experiences in Intrusion Detection. In Proceedings of the 1999 Conference on knowledge Discovery and Data Mining (KDD-99), 1999.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部