期刊文献+

基于脑磁共振图像配准的动态联合角点检测算法

Dynamic Combinational Corner Detection Algorithm Based on Brain Magnetic Resonance Image Registration
下载PDF
导出
摘要 角点检测算法是基于角特征点的图像配准方法的核心。Harris和Susan是两种重要的角点检测算法,有较好的检测能力,但是其在描述角点信息方面都不全面。因此,联合Harris、Susan两种算法是一种较好的解决思路。其中,如何确定在联合算法中Harris、Susan两种算法的权重是一个关键。设计了一种联合算法,并通过统计实验获取两者的权重,通过引入两个加权因子ω1和ω2分别对Harris角点响应值与Susan角点响应值进行加权计算,获得其角点强度,从而筛选出新的角点集合,使该联合算法的角点检测能力明显提高。最后将该方法用于脑磁共振图像配准实验中。实验比较结果表明,该联合角点检测算法在脑磁共振图像配准的应用中,相对于目前已有角点检测算法,能获得较高的配准精度和较好的稳定性。 Corner detection algorithm is key to the image registration algorithm based on corner feature point.Harris and Susan algorithms are two important detection algorithms of them because of their satisfying detection capability.But they are not comprehensive to describe the information of the corner points.Therefore,it is good solution to combine them together to enhance their capability.For this solution,it is important to find the weight of the two algorithms.This paper proposed a combinational method,and improved its capability greatly by introducing two weighted factors ω1 and ω2 and deciding their proportion based on statistical experiments.In the end,the method was used in brain MR image registration.The experimental results show that this algorithm can be used for brain MR image registration and can obtain higher registration precision and stability compared with the existing corner detection algorithms.
出处 《计算机科学》 CSCD 北大核心 2012年第6期278-282,300,共6页 Computer Science
基金 国家自然科学基金(60971016 61108086) 重庆市重大科技专项(CSTC 2009AB2147) 重庆大学中央高校科研启动基金(CDJZR10160003) 达州市重大科技攻关项目(2010zdzx006)资助
关键词 脑磁共振图像配准 HARRIS算子 SUSAN算子 动态 联合角点检测 Brain MR image registration Harris operator Susan operator Dyanmic Combinational corner detection
  • 相关文献

参考文献9

二级参考文献49

  • 1陈白帆,蔡自兴.基于尺度空间理论的Harris角点检测[J].中南大学学报(自然科学版),2005,36(5):751-754. 被引量:79
  • 2彭景林,章兢,李树涛.基于改进PV插值和混合优化算法的医学图像配准[J].电子学报,2006,34(5):962-965. 被引量:13
  • 3李博,杨丹,张小洪.基于Harris多尺度角点检测的图像配准新算法[J].计算机工程与应用,2006,42(35):37-40. 被引量:32
  • 4王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 5Richard Szeliski. Video mosaics for virtual environments[J ]. IEEE Computer Graphics and Applications, 1996, 16(2) : 22-30
  • 6Zhengwei Yang, F. S. Cohen. Image registration and object recognition using affine invariants and convex hulls[J]. IEEE Trans. on Image Processing, 1999, 8(7): 934-946
  • 7Zhengyou Zhang, Rachid Deriche, Olivier Faugeras et al.. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [ R]. INRIA Sophia-Antipolis, 1994. 1-38
  • 8C. Harris, M. Stephens. A combined corner and edge detector [C]. Proceedings of Fourth Alvey Vision Conference, UK, 1988. 147-151
  • 9Luigi Di Stefano, Stefano Mattoccia, Martino Mola. An efficient algorithm for exhaustive template matching based on normalized cross correlation [ C ]. Proceedings of the 12th International Conference on Image Analysis and Processing, Los Atamitos CA, USA, 2003. 322-327
  • 10Charles V. Stewart. MINPRAN: A new robust estimator for computer vision [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(10): 925-938

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部