期刊文献+

基于奈特不确定性随机波动率期权定价 被引量:22

Knightian uncertainty based option pricing with stochastic volatility
原文传递
导出
摘要 不同于传统的思路,本文以奈特不确定的视角处理带有随机波动率的期权定价问题.首先,证明随机波动率模型本质上是一个奈特不确定问题;并且用折现相对熵来度量奈特不确定大小.然后,通过一个效用函数来权衡奈特不确定和奈特溢价,求得个体在奈特不确定下最优概率测度,导出了含奈特厌恶度γ的欧式看涨期权定价公式.通过Monto Carlo模拟发现个体奈特厌恶度γ和期权的到期日对期权的价格有重要影响,并使用沪市权证实例给出奈特厌恶度,γ的具体估算方法. This paper deals with the stochastic volatility option pricing model in the viewpoint of Knightian uncertainty. First, we prove that the stochastic volatility model is in fact a Knightian uncertainty model; and we use the discounted relative entropy to measure the Knighitan uncertainty. Then, having balanced the Knightian uncertainty and Knightian premium through a utility function, we get the optimum probability measure, and we get the price formula of European call option with Knightian aversion degree γ. We find that γ and expiration date have important effect on the price of option by Monte Carlo simulation, and we give an example to show how to estimate the values of γ.
作者 韩立岩 泮敏
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第6期1175-1183,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70671005 70831001)
关键词 随机波动率 奈特不确定 奈特溢价 相对熵 期权定价 stochastic volatility Knightian uncertainty Knightian premium relative entropy option pricing
  • 相关文献

参考文献20

  • 1Knight F H. Risk, Uncertainty and Profit[M]. Boston: Houghton Mifflin, Reprinted, 1985.
  • 2Bewley T. Knightian decision theory: Part I[R]. Cowles Foundation Discussion Paper No. 807, Yale University, 1986.
  • 3Epstein L G, Wang T. Intertermporal asset pricing under Knightian uncertainty[J]. Econometrics, 1994, 62: 283-322.
  • 4Gilboa I. Expected utility theory with purely subjective non-additive probabilities[J]. Journal of Mathematical Economics, 1987, 16: 65-88.
  • 5Schmeidler D. Subjective probability and expected utility without additivity[J]. Econometrica, 1989, 57:571 587.
  • 6Gilboa I, Schmeidler D. Maxmin expected utility with non-unique prior[J]. Journal of Mathematical Economics, 1989, 18: 141-153.
  • 7Hansen L P, Sargent T J. Robust control and model uncertainty[J]. American Economic Review, 2001, 91: 60-66.
  • 8Kogan L, Wang T. A simple theory of asset pricing under model uncertainty[R]. Working Paper, Massachusetts Institute of Technology, 2003.
  • 9Black F, Scholes M. The valuation of option and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637-654.
  • 10Merton R C. Theory of rational option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4(1): 141-183.

同被引文献269

引证文献22

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部