摘要
设T是无穷维可分的希尔伯特空间H上的k-拟-A算子,证明了T的B-Weyl谱满足谱映射定理.更重要,若T或T*是k-拟-A算子,则广义Weyl定理对T成立.另外,若T*是k-拟-A算子,则广义a-Weyl定理对T成立.
If T is a k-quasi- A operator acting on an infinite dimensional separable Hilbert space H, then it is proved that B-Weyl spectrum of T satisfies the spectral mapping theorem. Moreover, if T or T^* is a k -quasi- A operator, then generalized Weyl's theorem holds for T. Also, if T^* is an k-quasi-A operator, then generalized a-Weyl's theorem holds for T.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第3期11-13,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
河南省基础与前沿技术研究计划项目(102300410264)
河南省教育厅科学技术研究重点项目(12B110025
2010A110010)