期刊文献+

k-拟-A算子的性质

Properties of k-quasi-A Operator
下载PDF
导出
摘要 设T是无穷维可分的希尔伯特空间H上的k-拟-A算子,证明了T的B-Weyl谱满足谱映射定理.更重要,若T或T*是k-拟-A算子,则广义Weyl定理对T成立.另外,若T*是k-拟-A算子,则广义a-Weyl定理对T成立. If T is a k-quasi- A operator acting on an infinite dimensional separable Hilbert space H, then it is proved that B-Weyl spectrum of T satisfies the spectral mapping theorem. Moreover, if T or T^* is a k -quasi- A operator, then generalized Weyl's theorem holds for T. Also, if T^* is an k-quasi-A operator, then generalized a-Weyl's theorem holds for T.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期11-13,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省基础与前沿技术研究计划项目(102300410264) 河南省教育厅科学技术研究重点项目(12B110025 2010A110010)
关键词 k-拟-A类算子 单值扩展性质 广义a-Weyl定理 k-quasi-A operators single valued extension property generalized a-Weyl's theorem
  • 相关文献

参考文献10

  • 1Berkani M. On a class of quasi-Fredholm operators[J]. Integr Equat Oper Th, 1999,34:244-249.
  • 2Berkani M. Index of B-Fredholm operators and generalization of a Weyl theorem[J]. Proc Amer Math soc, 2002,130:1417-1723.
  • 3Berkani M, Koliha J J. Weyl type theorems for bounded linear operators[J]. Acta Sci Math,2003,69t 379-391.
  • 4Furuta T, Ito M, Yamazaki T. A subclass of paranormal operators including class of log-hyponormal and several related classes[J]. Sci Math,1998,1:389-403.
  • 5Jeon I H, Kim I H. On operators satisfying T ITz I T>T I TIZZ [J]. Linear Algebra Appl,2006,418:854-862.
  • 6Tanahashi K, Jeon I H, Kim I H, et al. Quasinilpotent part of clas A or (p,k) -quasihyponormal operators[J]. Operator Theory, Ad- vances and Applications, 2008,187 : 199-210.
  • 7Zuo F, Shen J L. Weyl's theorem for algebraically k-quasi-A operator[J]. Chinese Annals of Mathematics, Series A, 2011,32 (4) : 459- 466.
  • 8Amouch M. Weyl type theorems for operators satisfying the single-valued extension property[J]. J Math Anal Appl, 2007,326:1476- 1484.
  • 9Berkani M. B-Weyl spectrum and poles of the resolvent[J]. J Math Anal Appl,2002,272: 596-603.
  • 10Lahrouz M, Zohry M. Weyl type theorem and the approximate point apectrum[J]. Irish Math Soc Bulletin, 2005,55:41-51.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部