期刊文献+

基于鉴别性i-vector局部距离保持映射的说话人识别 被引量:11

Speaker recognition based on discriminant i-vector local distance preserving projection
原文传递
导出
摘要 为了进一步提高i-vector说话人识别系统的性能,该文提出了一种鉴别性i-vector局部距离保持映射(discriminant i-vector local distance preserving projection,DIVLDPP)的流形学习算法。该算法以i-vector间的Euclid距离作为度量准则,并以最小化同类点间距离同时最大化异类近邻点间距离的鉴别性准则作为优化目标函数,利用求解广义特征值的方法,得到最终的投影映射矩阵。在美国国家标准技术局2008年说话人识别核心数据集上的实验结果表明:该算法可以明显提高目前i-vector说话人识别系统的性能。 The performance of the popular i-vector based speaker recognition system is improved by a manifold learning algorithm named discriminant i-vector local distance preserving projection(DIVLDPP).This algorithm uses the Euclidean distance to measure the i-vector space.The target function minimizes the distance between the same speaker samples and maximizes the distance between neighbouring samples of different speakers.A linear mapping matrix is obtained by solving a generalized eigenvalue problem.Tests on the speaker recognition evaluation data corpus released by the US National Institute of Standards and Technology in 2008 demonstrate that this i-vector system provides better speaker recognition performance.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期598-601,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(90920302 61005019) 国家"八六三"高技术项目(2008AA040201)
关键词 流形学习 i-vector 鉴别性 局部距离保持映射 说话人识别 manifold learning i-vector discriminative training local distance preserving projection speaker recognition
  • 相关文献

参考文献10

  • 1何亮,栗志意,蔡猛,刘加.集合分类中的鉴别式局部信息距离保持映射[J].清华大学学报(自然科学版),2011,51(7):1010-1016. 被引量:2
  • 2Kinnunen T,Li H.An overview of text-independent speakerrecognition:From features to supervectors[].Space Communications.2010
  • 3N. Dehak,P. J. Kenny,R. Dehak,P. Dumouchel,P. Ouellet.Front-End Factor Analysis for speaker verification[].IEEE Trans Audio Speech and Languge Processing.2011
  • 4He Xiaofei,Niyogi Partha.Locality preserving projections[].Advances in Neural Information Processing Systems.2004
  • 5Kenny P,Ouellet P,Dehak N,et al.A study ofinter-speaker variability in speaker verification[].IEEE Transactions on AudioSpeech and LanguageProcessing.2008
  • 6Patrick Kenny,Boulianne G,Ouellet P,et al.Speaker andsession variability in GMM-based speaker verification[].IEEE Transactions on AudioSpeech and LanguageProcessing.2007
  • 7.NIST Speaker Recognition Evaluation[]..
  • 8Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussian mixture models[].Digital Signal Processing.2000
  • 9He X F,Cai D,Yan S C,et al.Neighborhood preserving embedding[].Proceedings of the Tenth IEEE International Conference on Computer Vision.2005
  • 10Ghahramani Z,Hinton GE.The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1 . 1996

二级参考文献27

  • 1Ning X, Karypis G. The set classification problem and solution methods [C]// Proceedings of International Conference on Data Mining Workshops. Pisa, Italy, 2008:720-729.
  • 2Kinnunen T, Li H. An overview of text-independent speaker recognition: From features to supervectors[J]. Speech Communication, 2010, 52(1) : 12 - 40.
  • 3Buyuk O, Arslan L. HMM-based text-dependent speaker recognition with handset-channel recognition [C]// Proceedings of Signal Processing and Communications Applications Conference. Eskisehir, Turkey, 2010:383-386.
  • 4Reynolds D, Quatieri T, Dunn R. Speaker verification using adapted Gaussian mixture models EJ]. Digital Signal Processing, 2000, 10: 19- 41.
  • 5Solomonoff A, Campbell W, Boardman I. Advances in channel compensation for SVM speaker recognition EC~// Proceedings of International Conference on Acoustics, Speech and Signal Processing. Philadelphia, USA, 2005 : 629 - 632.
  • 6Campbell W, Karam Z, Sturim D. Inner product discriminant functions I-J]. Advances in Neural Information Processing Systems, 2009, 22: 207-215.
  • 7Campbell W. Weighted nuisance attribute projection [C]// Proceedings of Odyssey. Brno, Czech, 2010, 019.
  • 8Kenny P, Ouellet P, Dehak N, et al. A study of interspeaker variability in speaker verification [J]. IEEE Transactions on Audio, Speech and, Language Processing, 2008, 16 : 980 - 988.
  • 9Kenny P, Boulianne G, Ouellet P, et al. Joint factor analysis versus eigenchannels in speaker recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15: 1435-1447.
  • 10Kenny P, Boulianne G, Ouellet P, et al. Speaker and session variability in GMM-based speaker verification [J].IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15: 1448-1460.

共引文献1

同被引文献95

  • 1郭武,戴礼荣,王仁华.采用UBM更新量作为支持向量机特征的说话人确认[J].清华大学学报(自然科学版),2008,48(S1):704-707. 被引量:4
  • 2李胜,陈庆伟,胡维礼.不变流形在非完整链式系统镇定中的应用[J].南京理工大学学报,2005,29(5):505-509. 被引量:2
  • 3吴礼福,姚志强,戴蓓蒨,李辉.音源特征用于提高话者确认系统的鲁棒性[J].中国科学技术大学学报,2006,36(5):476-480. 被引量:2
  • 4杨阳,陈永明.声纹识别技术及其应用[J].电声技术,2007,31(2):45-46. 被引量:22
  • 5谢焱陆.基于特征变换和分类的文本无关电话语音说话人识别研究[D].合肥:中国科学技术大学,2007.
  • 6CAMPBELL J. Speaker reeognition: a tutorial[ C ]// Pro- ceedings of IEEE 1997 Custom Integrated Circuits Confer- ence. Califomia:IEEE,1997, 85(9) : 1A37-1462.
  • 7KERSTA L G. Voiceprint identification [J]. Nature, 1962, 196: 1253-1257.
  • 8LUCK J E: Automatic speaker verification using cepstral measurements[J]. Journal of the Acoustical Society of A- merica, 1979, 46(4) :966-978.
  • 9ATAL B S. Automatic recognition of speakers from their voices [ J ]. Proceedings of IEEE, 1976, 64 (4) : 460-475.
  • 10DAVIS S B, MERMELSTEIN P. Comparison of parametric representations for monosyllabic word recognition in contin- uously spoken sentences [ J ]. IEEE Transactions on Acous- tics,Speech and Signal Processing,1980,28(4) :357-366.

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部