期刊文献+

中国地区相对湿度与温度多分形特征对比分析 被引量:4

Comparative Analysis to Multi-fractal Behaviors of Relative Humidity and Temperature over China
下载PDF
导出
摘要 应用多分形去趋势涨落分析(MF-DFA)方法,研究了中国地区相对湿度和温度序列的多分形特征差异,并对比分析了其对应的奇异谱3个参数(奇异谱宽度α、奇异谱不对称性αas和长程相关性α0)的特征。结果表明:1)相对湿度序列的多分形强度弱于温度序列;2)相对湿度序列多分形性强的地区与温度序列有较大差异,前者主要位于我国西南地区,后者主要在华南和黄河以北地区;3)相对湿度序列的多分形不对称性强于温度序列;4)相对湿度序列的奇异谱均为左偏,温度序列则基本是对称的;5)相对湿度序列的长程相关性大于温度序列。奇异谱的3个特征参数的组合完整地刻画了特定的长程相关特性,相对湿度和温度序列多分形特征的不同,揭示了其生成动力过程的差异。 The different multi-fractal behaviors of relative humidity and temperature over China are studied by means of multi-fractal detrended fluctuation analysis(MF-DFA for short) method.Three multi-fractal parameters(the spectrum width α,the asymmetry αas and the long range correlation index α0) of singularity spectrum are introduced to quantify the multi-fractal behaviors.Results show that multi-fractality in humidity daily records are stronger than that of temperature’s;stations with strong multi-fractality of relative humidity and temperature lie in different regions: southwest of China for relative humidity and South China and north of the Yellow River for the latter;asymmetry of singularity of relative humidity records is weaker than that of temperature’s and their singularity spectra exhibit left-skewed;singularity spectrum of temperature records exhibit symmetry on the whole;long range correlation of relative humidity records is higher than that of temperature’s.Combination of three parameters of multi-fractal spectrum stands for a kind of long range correlations and different behaviors of them reveal different dynamics underlying relative humidity and temperature.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期399-404,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(40775040 40975027)资助
关键词 长程相关性 标度指数 多分形 多分形去趋势涨落分析 long range correlation scaling exponent multi-fractal multi-fractal detrended fluctuation analysis
  • 相关文献

参考文献17

  • 1Koscielny-Bunde E, Bunde A, Havlin S, et al. Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett, 1998, 81: 729-732.
  • 2Talkner P, Weber R O. Power spectrum and detrended fluctuation analysis: application to daily temperatures. Phy Re E, 2000, 62:150-160.
  • 3Kantelhardt J W, Koscielny-Bunde E, Rego H A, et al. Detecting long-range correlations with detrended fluctuation analysis. Physica A, 2001, 295:441454.
  • 4Bunde A, Havlin S. Power-law persistence in the atmosphere and in the oceans. Physica A, 2002, 310: 15-24.
  • 5Fraedrich K, Blender R. Scaling of atmosphere and ocean oemperature correlations in observations and climate models. Phys Rev Lett, 2003, 90:108501.
  • 6时少英,刘式达,付遵涛,刘式适,梁福明,辛国君,李百炼.天气和气候的时间序列特征分析[J].地球物理学报,2005,48(2):259-264. 被引量:28
  • 7Vattay G, Harnos A. Scaling behavior in daily air humidity fluctuations. Phys Rev Lett, 1994, 73: 768-771.
  • 8Lin G X, Chen X, Fu Z T. Temporal-spatial diversities of long-range correlation for relative humidity overChina. Physica A, 2007, 383:585-594.
  • 9江田汉,邓莲堂.全球气温变化的多分形谱[J].热带气象学报,2004,20(6):673-678. 被引量:16
  • 10冯涛,付遵涛,毛江玉.北京地区气候变量的多分形特征研究[J].地球物理学报,2010,53(9):2037-2044. 被引量:4

二级参考文献57

共引文献43

同被引文献49

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部