期刊文献+

基于SVM-ADRC的全垫升气垫船航向控制 被引量:4

Course control of air cushion vehicle based on SVM-ADRC
原文传递
导出
摘要 为改善全垫升气垫船的操纵性,提出了一种基于支持向量机的参数自整定自抗扰控制算法.采用扩张状态观测器观测系统内外扰动并加以补偿,利用非线性误差反馈控制律提高控制性能.利用支持向量机辨识系统非线性关系,建立其瞬时线性化模型.结合最优控制的二次型性能指标思想,实现自抗扰控制参数的自整定.仿真结果表明:在恶劣环境扰动下,所设计控制器能够实现全垫升气垫船航向的精确控制,调节时间短、超调量小、自适应性强. An active disturbance rejection control (ADRC) with support vector machines (SVM) optimization was proposed to improve the maneuverability of air cushion vehicle. The interior and external disturbances were estimated by the extended state observer and the system was compensated by total disturbance estimation. Nonlinear state error feedback control law was used to enhance control quali- ty. SVM model was used to identify the system information, which was then linearized to extract the instantaneous linear model. With the quadratic performance index from optimal control, the parameters self tuning of ADRC were realized. Simulation result shows that in harsh environment, the controller proposed with short adjusting time, small overshot and strong adaptability can achieve the course control for air cushion vehicle accurately.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期59-63,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 中央高校基本科研业务专项基金资助项目(HEUCF110407 HEUCF100419) 黑龙江省博士后基金资助项目(LBH-Z08245)
关键词 全垫升气垫船 航向控制 自抗扰控制 支持向量机 参数自整定 air cushion vehicle course control active disturbance rejection control support vectormachines self-tuning
  • 相关文献

参考文献11

二级参考文献31

  • 1韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88. 被引量:423
  • 2乔国林,童朝南,孙一康.拉速液位与结晶器出钢温度的关系研究[J].铸造技术,2005,26(10):906-909. 被引量:5
  • 3孙蓟泉,李慧剑,马世麟.结晶器冷却强度与坯壳厚度的关系[J].钢铁,1997,32(2):24-27. 被引量:9
  • 4Yang J Z, Esteban P P, Karim A M, et al. A multifingered hand prosthesis[J].Mechanism and Machine Theory, 2004, 39(6): 555-581.
  • 5Zollo L, Roccella S, Tucci R, et al. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetics hand robotic applications[C]// Biorob 2006. Pisa: IEEE, 2006: 402-407.
  • 6Cipriani C, Controzzi M, Carrozza M C, et al. Progress towards the development of the smarthand transradial prosthesis[C]// 2009 IEEE 11th International Conference on Rehabilitation Robotics. Piscataway: 1EEE, 2009: 682-687.
  • 7Pons J L, Rocon E, Ceres R, et al. The MANUS- HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects[J]. Autonomous Robots, 2004, 16(2): 143-163.
  • 8Bitzer S, van der Smart P. I.earning EMG control of a robotic hand:towards active prostheses[C] // Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2 819-2 823.
  • 9Sangole A P, I.evin M F. Arches of the hand in reach to grasp[J]. Journal of Biomechanics. 2008, 41(4): 829- 837.
  • 10Tetsuya M, Haruhisa K, Keisuke Y. Anthropomor phic robot hand: Gifu hand III[C]//2002 Internation al Conference on Computer Applications in Shipbuild ing. Jeonbuk, Korea: Tribon Solution AB, 2002 1 288-1 293.

共引文献45

同被引文献40

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部