期刊文献+

基于分水岭与图割的自动分割方法 被引量:8

Object auto-segmentation based on watershed and graph cut
下载PDF
导出
摘要 为快速、准确的提取CT序列图像中目标物体,把分水岭和图割相结合.首先选择目标物体的内外轮廓,对内外轮廓之间的区域用分水岭算法预分割为若干小区域,把每一个小区域作为一个节点,建立图结构.把多源点和多汇点简化成单源点和单汇点,建立新的图结构.然后利用最大流/最小割定理进行切割,提取目标物体.最后把上一张CT目标物体的轮廓映射到下一张CT上,分别扩大和缩小该轮廓作为该CT的内外轮廓.根据上述方法提取轮廓,对整个CT序列依次循环操作.通过实验证明该算法在分割效果和分割时间上优于其它传统算法,同时,实现了三维空间上序列轮廓的自动提取. In order to segment CT slices mostly and accurately,watershed algorithm and graph cut were combined.Firstly,the inner contour and the outer contour of the target object were selected,and then watershed algorithm was applied to divide the region between contours into series of smaller regions.Each smaller region was regarded as a node to establish the graph.Multiple sources and multiple sinks can be converted to the single source and the single sink to refine the graph.Secondly,the target object of the first CT can be extracted by the maximal-flow cut.Thirdly,mapping the contour to the next CT,the contour was reduced and expanded to regard as the inner contours and the outer contours.Then the next CT was segmented.Followed by the cycling,the entire sequence of CT will be operated.The experiment proves that this algorithm is more effective in the segmentation and the running time than the other traditional algorithms.Meanwhile,the contours of the series of CT were extracted automatically.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第5期636-640,647,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 江苏省科技项目(BE2009078)
关键词 图割 分水岭 最大流/最小割 三维分割 图像处理 graph cut watershed algorithm max flow/min cut the three-dimensional segmentation image processing
  • 相关文献

参考文献8

  • 1曹蕾,路利军,杨蕊梦,陈武凡.基于区域增长的肺结节自适应形态分割[J].南方医科大学学报,2008,28(12):2109-2112. 被引量:8
  • 2赵锋,赵荣椿.分裂-合并方法在图象分割、目标提取中的应用[J].西北工业大学学报,2000,18(1):116-120. 被引量:10
  • 3孔丁科,汪国昭.基于区域相似性的活动轮廓SAR图像分割[J].计算机辅助设计与图形学学报,2010,22(9):1554-1560. 被引量:10
  • 4Yuri Boykov, Gareth Funkalea. Graph cuts and efficient N-D im- age segmentation[ J ]. International Journal of Computer Vision, 2006,70(2) :109 - 131.
  • 5Vincent L, Soille P. Watersheds in digital spaces:an efficient al- gorithm based on immersion simulation [ J ]. IEEE Transactions on Pattern Analysis and Machine Inteligence, 1991,13 : 583 - 598.
  • 6Li Yin, Sun Jian, Tang Chikeung, et al. Lazy snapping [ J ]. ACM Transactions on Graphics ,2004,23 ( 3 ) :303 - 308.
  • 7Xu Ning,Ahuja Narendra, Bansal Ravi. Object segmentation u- sing graph cuts based active contours [ J ]. Computer Vision and Image Understanding ,2007,107:210 - 224.
  • 8Boykov Yuri, Kolmogorov Vladimir. An experimental comparison of min-cut max-flow algorithm of energy minimization in vision [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2004,26(9) :1124 - 1137.

二级参考文献32

  • 1王化,唐光健.多层螺旋CT在肺结节诊断中的应用及展望[J].国外医学(临床放射学分册),2005,28(6):402-405. 被引量:8
  • 2王晓华,马大庆.计算机辅助诊断在肺结节中的应用进展[J].中华放射学杂志,2006,40(4):443-445. 被引量:14
  • 3郑德璋,廖宝文,郑松发,李云,林书宁,杨永激,陈苏.广东省红树林及其保护的重要性[J].广东林业科技,1997,13(1):8-14. 被引量:11
  • 4Diederich S, Lenzen H, Windmann R, et al. Pulmonary nodules: experimental and clinical studies at low-dose CT [J].Radiology, 1999, 213(1) :289-98.
  • 5Costello P. Pulmonary nodule: evaluation with spiral volumetric CT[J]. Radiology, 1991, 179(3): 875-6.
  • 6Marten K, Seyfarth T, Auer F, et al. Computer-assisted detection of pulmonary nodules: performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperienced chest radiologists[J]. Eur Radiol, 2004, 14: 1930-38.
  • 7Xu N, Ahuja N, Bansal R. Automated lung nodule segmentation using dynamic programming and EM based classification [J]. Proc SPIE, 2002, 4684: 666-76.
  • 8Okada K, Comaniciu D, Krishnan A. Robust anisotropic Gaussian fitting for eolumetric characterization of pulmonary nodules in multislice ct [ J ]. IEEE Trans Med Imaging, 2005, 24(3): 409-23.
  • 9Kuhnigk JM, Dicken V, Bornemann L, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans [J]. IEEE Trans Med Imaging, 2006, 25(4): 417-34.
  • 10Fan L, Qian J. Automatic segmentation of pulmonary nodules by using dynamic 3-D cross-correlation for interactive CAD systems [J]. Proc SPIE Med Imaging, 2002, 4684: 1362-9.

共引文献25

同被引文献65

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部