期刊文献+

Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations 被引量:1

Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations
原文传递
导出
摘要 A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.
作者 徐西祥
机构地区 College of Science
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第6期953-960,共8页 理论物理通讯(英文版)
基金 Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under GrantNo. J08LI08
关键词 differential-difference equation Lax pair Hamiltonian form Binary nonliearization Bargmannsymmetry constraint integrable symplectic map Liouville可积性 微分差分方程 对称约束 Hamilton形式 哈密顿系统 Lax对 完全可积 家庭
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部