期刊文献+

基于多基因组合选择模型的结肠癌特征基因选取 被引量:1

Informative Genes Selection of Colon Cancer Based on Polygenic Combination Selection Model
下载PDF
导出
摘要 通过基因的Bhattacharyya距离指标过滤掉大部分无关基因,然后探索性的提出了一种建立多基因组合选择模型的统计方法。从候选特征基因中选取了8个可能的结肠癌特征基因集合,判别分析的结果证明了该方法的可行性。 To select informative genes of colon cancer by analysis of gene expression. Most irrelevant gene filtration by the gene distance method of Bhattacharyya, then putting forward a statistical method of establishing polygenic combination selection model. The study selects 8 possible informative genes sets of colon cancer from the candidate informative genes. The results of discriminant analysis show the feasibility of this approach, and play a certain reference arriving role to clinical diagnosis of cancer and research in biomedical sciences.
作者 马超
出处 《统计与信息论坛》 CSSCI 2012年第6期78-82,共5页 Journal of Statistics and Information
关键词 基因表达谱 生物信息学 多基因组合选择模型 结肠癌 DNA microarray Bioinformatics polygenic combination selection model colon cancer
  • 相关文献

参考文献12

  • 1Golub R R, Slonim D K, Tamayo P. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring[J]. Science, 1999,289(15).
  • 2Khan J, Wei J S, Ringner M. Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Net Works[J]. Nature Medicine, 2001,7 (6).
  • 3Furey T S, Cristianini N, Duffy N, et al. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data[J]. Bioinformatics, 2000,16 (10).
  • 4Ramaswamy S, Golub T R. DNA Microarrays in Clinical Oncology[J]. Journal of Clinical Oncology, 2002,20(7).
  • 5Wang Y, Makedon F, Ford J C. Hykgene: A Hybrid Approach for Selecting Marker Genes for Phenotype Classification Using Microarray Gene Expression Data[J]. Bioinformatics, 2005,21(8).
  • 6Guyon I, Weston J, Barnhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines[J]. Machine Learning, 2000,46(13).
  • 7Alon U, Barkai N, Notterman D A. Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays[J]. Proc Natl Acad Sci Usa, 1999,96(7).
  • 8Zbang H, Yu C Y, Singer 13. Recursive Partioning for Tumor Classification with Gene Expression Microarray Data[J]. Proc Natl Acad Sci Usa,2001,98(12).
  • 9李霞,饶绍奇,张田文,郭政,张庆普,K.L.Moser,E.J.Topol.应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法[J].中国科学(C辑),2004,34(2):195-202. 被引量:16
  • 10李颖新,刘全金,阮晓钢.急性白血病的基因表达谱分析与亚型分类特征的鉴别[J].中国生物医学工程学报,2005,24(2):240-244. 被引量:19

二级参考文献59

  • 1RAMASWAMY S,GOLUB T R.DNA Microarrays in Clinical Oncology[J].Journal of Clinical Oncology,2002,20 (7):1932 ~ 1941.
  • 2LANDER E S,WEINBERG R A.GENOMICS:Journey to the Center of Biology[J].Scince,2000,287(5459):1777 ~1782.
  • 3LANDER E S.Array of hope[J].Nature Genetics,1999,21(supp1 1):3 ~4.
  • 4ALON U,BARKAI N,NOTIERMAN D A,et al.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci Usa,1999,96:6745 ~ 6750.
  • 5ZHANG H,YU C Y,SINGER B,et al.Recursive Partioning for tumor classification with gene expression microarray data[J].Proc Natl Acad Sci Usa,2001,98:6730-67-35.
  • 6THEODORIDIS S,KOUTROUMBAS K.Pattern Recognition.second Edition[M].Elsevier Science,2003,177 ~ 179.
  • 7PADIL P,NOVOVICOVA J,KITTLER J.Floating Search Method in feature selection[J].Pattern Recognition Letters,1994,15:1119 ~ 1125.
  • 8边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1998..
  • 9VAPNIK V N.Statistical Leaning Theory[M].New York:Wiley Interscience,1998.
  • 10GUYON I,WESTON J,BARNHILL S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2000,46 (13):389 ~ 242.

共引文献36

同被引文献10

  • 1Huang J,Breheny P,Ma S.A Selective Review of Group Selection in High Dimensional Models[J].Statistical Science,2012,27(4).
  • 2Fan J,Lv J.Sure Independence Screening for Ultrahigh Dimensional Feature Space[J].Journal of the Royal Statistical Society,Ser.B,2008,70(5).
  • 3Hall P,Miller H.Using Generalized Correlation to Effect Variable Selection in Very High Dimensional Problems[J].Journal of Computational and Graphical Statistics,2009,18(3).
  • 4Fan J,Samworth R,Wu Y.Ultrahigh Dimensional Feature Selection:Beyond the Linear Model[J].Journal of Machine Learning Research,2009(10).
  • 5Fan J,Song R.Sure Independence Screening in Generalized Linear Models With NP-Dimensionality[J].The Annals of Statistics,2010,38(6).
  • 6Fan J,Feng Y,Song R.Nonparametric Independence Screening in Sparse Ultra-high-dimensional Additive Models[J].Journal of the American Statistical Association,2011,106(494).
  • 7Fan J,Ma Y,Dai W.Nonparametric Independence Screening in Sparse Ultra-high-dimensional Varying Coefficient Models[J].Journal of the American Statistical Association,2014,109(507).
  • 8Liu J,Li R,Wu S.Feature Selection for Varying Coefficient Models with Ultrahigh-dimensional Covariates[J].Journal of the American Statistical Association,2014,109(505).
  • 9Segal M,Dahlquist D,Conklin B.Regression Approach for Microarray Data Analysis[J].Journal of Computational Biology,2003,10(6).
  • 10Li R,Wei Z,Zhu L.Feature Screening Via Distance Correlation Learning[J].Journal of the American Statistical Association,2012,107(499).

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部