摘要
为了构造非线性发展方程的无穷序列类孤子精确解,发掘第一种椭圆辅助方程的构造性和机械化性特点,获得了该方程的一些新类型解和相应的Bcklund变换.在此基础上利用符号计算系统Mathematica构造了Nizhnik-Novikov-Vesselov方程的无穷序列类孤子精确解,包括无穷序列光滑类孤子解、无穷序列类尖峰孤立子解和无穷序列类紧孤立子解.
To construct the infinite sequence soliton-like exact solutions of nonlinear evolution equations and develop the characteristics of constructivity and mechanization of the first kind of elliptic equation,new type of solutions and the corresponding Bcklund transformation of the equation are presented.Based on this,infinite sequence soliton-like exact solutions of Nizhnik-Novikov-Vesselov equation are obtained with the help of symbolic computation system Mathematica,which includes infinite sequence smooth solitonlike solutions,infinite sequence peak soliton-like solutions and infinite sequence compact soliton-like solutions.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第11期30-40,共11页
Acta Physica Sinica
基金
国家自然科学基金(批准号:10862003)
内蒙古自治区高等学校科学研究基金(批准号:NJZY12031)
内蒙古自治区自然科学基金(批准号:2010MS0111)资助的课题~~