期刊文献+

含分数阶微分的线性单自由度振子的动力学分析 被引量:28

Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative
原文传递
导出
摘要 研究了一个含分数阶微分的线性单自由度振子,通过平均法得到了系统的近似解析解.在近似解中,分数阶微分项的系数和阶次以等效线性阻尼和等效线性刚度的形式影响着系统的动力学特性,这一点与现有文献中直接将分数阶微分项归类为阻尼进行处理的方法完全不同.比较了近似解析解和数值解,二者的符合精度很高,证明了近似解析解的准确性.分析了分数阶系数和分数阶阶次对系统响应特性的影响,发现分数阶系数和分数阶阶次都既可以通过等效线性阻尼影响系统的共振振幅,又可以通过等效线性刚度影响系统的共振频率. A linear single degree-of-freedom oscillator with fractional-order derivative is researched by the averaging method, and the approximately analytical solution is obtained. The effects of the parameters on the dynamical property, including the fractional coefficient and the fractional order, are characterized by the equivalent linear damping coefficient and the equivalent linear stiffness, and this conclusion is entirely different from the published results. The comparison of the analytical solution with the numerical results verifies the correctness of the approximately analytical results. The following analysis on the effects of the fractional parameters on the amplitudefrequency is fulfilled, and it is found that the fractional coefficient and the fractional order could affect not only the resonance amplitude through the equivalent linear damping coefficient, but also the resonance frequency by the equivalent linear stiffness.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第11期158-163,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11072158 10932006) 河北省杰出青年科学基金(批准号:E2010002047) 教育部新世纪优秀人才支持计划教育部长江学者和创新团队发展计划(批准号:IRT0971)资助的课题~~
关键词 分数阶微分 平均法 近似解析解 fractional-order derivative averaging method approximately analytical solution
  • 相关文献

参考文献30

  • 1Oldham K B, Spanier J 1974 The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press) pl.
  • 2Podlubny I 1999 Fractional Differential Equations (London: Aca- demic Press) pl0.
  • 3Petras 12011 Fractional-OrderNonlinear System (Beijing: Higher Education Press) p 19.
  • 4Rossikhin Y A, Shitikova M V 2010 Appl. Mech. Rev. 63 010801.
  • 5Riewe F 1997 Phys. Rev. E 53 3581.
  • 6Wang Z Z, Hu H Y 2010 Sci. China Phys. Mech. 53 345.
  • 7Wang Z Z, Du M L 2011 Shock Vib. 18 257.
  • 8Rossikhin Y A, Shitikova M V 1997 Acta Mech. 120 109.
  • 9Li G G, Zhu Z Y, Cheng C J 2011 Appl. Math. Mech. 22 294.
  • 10Cao J Y, Ma C B, Xie H, Jiang Z D 2010 J. Comput. Nonlin. Dt / 5041012.

同被引文献206

引证文献28

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部