期刊文献+

熔石英后表面坑点型划痕对光场调制的近场模拟 被引量:6

Simulation of field intensification induced by pit-shaped crack on fused silica rear-surface
原文传递
导出
摘要 建立了坑点型划痕的旋转抛物面模型,用三维时域有限差分方法研究了熔石英后表面坑点型划痕随深度、宽度、间距以及酸蚀量变化对波长λ=355 nm入射激光的调制.研究表明,这类划痕调制最强区位于相邻两坑点的连接区,且越靠近表面调制越强.当其宽深比为2.0—3.5、坑点间距约为坑点宽度的1/2时,可获得最大光场调制,最大光强增强因子(LIEF)为11.53;当坑点间距大于坑点宽度时,其调制大为减弱,相当于单坑的场调制.对宽为60δ(δ=λ/12),深和间距均为30δ的坑点型划痕进行刻蚀模拟,刻蚀过程中最大LIEF为11.0,当间距小于300 nm时,相邻坑点由于衍射形成场贯通. Rotating paraboloid model is establishd,and three-dimensional finite-difference time-domain method is used to simulate pitshaped cracks on fused silica rear-surface.The light intensification with its depth,width,gap distance and etch value are investigated under 355 nm laser incident.Results show that the strongest modulation is located at the connection area between pit and pit,and the modulation become strong with approaching to the surface.The maximum light intensity enhancement factor(LIEF) is 11.53 when the breadth depth ratio ranges from 2.0 to 3.5 and gap distance close to 1/2 width.As gap distance greater than the width,the modulation reduces greatly,which is equal to a single pit.For 60δ-width,30δ-depth and 30δ-gap distance cracks,the maximum LIEF is 11.0 during the acid etching.As the gap distance is less than 300 nm,the diffraction of the light field makes the neighbor pits connective.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第11期306-313,共8页 Acta Physica Sinica
基金 国家自然科学基金青年科学基金(批准号:10904008) 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:11076008) 中央高等学校基本科研基金(批准号:ZYGX2009X007 ZYGX2010J045 ZYGX2011J043)资助的课题~~
关键词 熔石英 坑点型划痕 激光辐照 时域有限差分 fused silica; pit-shaped crack; laser irradiation; finite-difference time-domain
  • 相关文献

参考文献13

  • 1Campbell J H, Hawley-Fedder R A, Stolz C J. Menapace J A, Bor- den M R, Whitman P K, Yu J, Runkel M J, Riley M O, Feit M D, Hackel R P 2004 Proc. SPIE 5341 84.
  • 2Huang W Q 2009 MS Thesis (Mianyang: China Academy of En- gineering Physics) (in Chinese).
  • 3Belleville P, Prene P, Bonnin C, Beaurain L, Montouillout Y, Lavastre 1~ 2004 Proc. SPIE 5250 196.
  • 4Pegon P M, Germain C V, Rorato Y R, Belleville P F, Lavastre E 2004 Proc. SPIE 5250 170.
  • 5Bercegol H, Bouchut P R, Lamaignere L, Le Garrec B, Raze G 2004 Proc. SPIE 5273 312.
  • 6Papernov S, Schmid A W 2008 Proc. SPIE 7132 7132 I J-1.
  • 7Liu F M, Zhang L D, Li G H 2005 Chin. Phys. 14 2145.
  • 8Bloembergen N 1973 Appl. Opt. 12 661.
  • 9Hua J R, Zu X T, Li L, Xiang X, Chen M, Jiang X D, Yuan X D,Zheng W G 2010 Acta Phys. Sin. 59 2519 (in Chinese).
  • 10Hua J R, Li L, Xiang X, Zu X T 2011Acta Phys. Sin. 60 044206 (in Chinese).

同被引文献33

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部