期刊文献+

向列相液晶染料可调谐激光器的研究 被引量:9

Investigation of the tunable laser of one-dimensional photonic crystal with dye-doped nematic liquid crystal defect layer
原文传递
导出
摘要 对向列相液晶染料的可调谐激光器进行了光学特性研究.以650 nm为中心波长设计了SiO_2和TiO_2多层膜的一维光子晶体,以激光染料与向列相液晶的混合物作为增益介质层,制备了波长可调谐激光器.用Nd:YAG倍频脉冲激光器输出的532 nm激光抽运所制备的激光器样品得出如下光学特性:激光发射波长随温度调谐范围为605.5—639.8 nm,达到34.3 nm,随电压调谐范围为634.5—619.5 nm,达到15 nm.发射激光每脉冲的阈值能量为12.3μJ,激光线宽小于1 nm. We investigate the optical characteristics of the tunable laser of a one-dimensional photonic crystal(ID PC) containing Dye-doped nematic liquid crystal(NLC).The dielectric multilayer consisting of an alternating stack of SiC〉2 and TiO2 layers is used as the ID PC whose defect layer is filled with the laser dye and NLC.The central wavelength of the stop band of the 1D PC is 650 nm.A second-harmonic light of a Q-switched Nd:YAG laser has a wavelength of 532 nm,and is used for excitation.With the temperature increasing from 25.5℃to 48℃,the emission wavelength of the tunable laser is continuously shifted from 605.5 to 639.8 nm,the total wavelength shifts is 34.4 nm.With the external voltage increasing from 0 to 2.86 V,the emission wavelength of the tunable laser is shifted from 634.5 to 619.5 nm,the total wavelength shifts are 15 nm.The lasing threshold was about 12.3μJ/pulse,and the linewidth of the emission peak was less than 1 nm.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第11期314-318,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61107059) 高等学校博士学科点号项科研基金(批准号:200802171034) 黑龙江省博士后基金(批准号:LBH-Z10216)资助的课题~~
关键词 可调谐激光器 向列相液晶 染料 tunable laser; nematic liquid crystal; dye
  • 相关文献

参考文献9

  • 1Alison D F, Stephen M M, Harry J C 2006 Materialstoday 9 36.
  • 2Kopp V I, Fan B, Vithana H K M, Genack A Z 1998 Opt. Lett. 23 1707.
  • 3Kopp V I, Zhang Z Q, Genack A 2001 Phys. Rev. Lett. 86 1753.
  • 4Araoka F, Shin K C, Takanishi Y, Ishikawa K, Takezoe H, Zhu Z, Swager T M 2003 J. Appl. Phys. 94 279.
  • 5Petriashvilil G, Matranga M A, De Santo M P, Chilaya G, Barberi R 2009 Opt. Express 17 4553.
  • 6Lin S H, Shyu C Y, Liu J H, Yang P C, Mo T S, Huang S Y, Lee C R 2010 Opt. Express 18 9496.
  • 7Ozaki R, Matsui T, Ozaki M, Yoshino K 2003 Appl. Phys. Lett. 82 3593.
  • 8Ozaki R, Matsuhisa Y, Ozaki M, Yoshino K 2004 Appl. Phys. Lett. 84 1844.
  • 9Jeong M Y, Choi H, Wu J W 2008 Appl. Phys. Lett. 92 051108.

同被引文献77

  • 1黄芳云,杨东.光子晶体液晶光纤的光波导特性[J].光电子技术,2009,29(1):47-50. 被引量:2
  • 2蒋路帆,郭娟.裸眼3D液晶透镜技术专利分析[J].电视技术,2012,36(S2):14-16. 被引量:4
  • 3Kaiser J, Degen C, Els?sser W 2002 J. Opt. Soc. Am. B 19 672.
  • 4Law J Y, Agrawal G P 1997 IEEE Photon. Technol. Lett. 9 437.
  • 5Tayahi M B, Lanka S, Wang J, Catsten J, Hofmann L, Sukanta S 2006 Proc. of SPIE 6132 61320B.
  • 6Vogel P, Ebert V 2001 Appl. Phys. B 72 127.
  • 7Ostermann J M, Rinaldi F, Debernardi P, Michalzik, R 2005 IEEE Photon. Technol. Lett. 17 2256.
  • 8Yan Z, Lin C H, Coldren L A 2011 IEEE Photon. Technol. Lett. 23 305.
  • 9Li S, Guan B L, Shi G Z, Guo X 2012 Acta Phys. Sin. 61 18 (in Chinese).
  • 10Boutami S, Benbakir B, Leclercq J L, Viktorovitch P 2007 Appl. Phys. Lett. 91 071105.

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部