期刊文献+

直流法测试薄膜热导的数值模拟研究 被引量:3

Numerical simulation of direct current method of measuring thermal conductivities of thin films
原文传递
导出
摘要 薄膜的热导率是薄膜热学性能的最重要参数之一,相对于多数文献的二维或三维测试结构,本文采用一维双端支撑悬臂梁结构研究了薄膜热导率的测试方法.悬臂梁包含上层的兼做加热电阻及测温电阻的金属条和下层的待测试薄膜.利用一维热传导方程推导并获得了在直流电流加热条件下,悬臂梁的温升分布(△T)及加热电阻两端电压增量(△U)表达式与薄膜热导率之间的关系.采用ANSYS有限元软件仿真了不同仿真参数时的△T及△U,仿真结果与温升表达式计算结果符合得很好.与常用的3倍频率法(3w)薄膜热学性能测试方法相比,一维悬臂梁直流法测试结构及手段较为简单且可以获得更为精确的结果. Thermal conductivity is one of the most important physical properties of thin films.Different from two-or three-dimensional measurement structures in most reports,in this work,one-dimensional(1D) two-end supported cantilever beam is provided.The structure of cantilever includes a metal heater(which also serves as a thermometer) and thin film(s) underneath for measurement. 1D heat flow equation is employed to obtain the expression of temperature rise distribution(△T(x) along the cantilever beam and voltage drop changes along the heater(△U) when a direct current(DC) follows in the heater.To confirm the correctness of theoretical deduction,ANSYS finite element software is employed to simulate△T(x) and△U.Results demonstrate that the simulations are in good agreement with the theoretic calculations obtained from expressions of△T(x) and△U.Compared with conventional 3-times frequency(3ω) method,the DC method with 1D cantilever beam is relatively simple and accurate.
作者 黎威志 王军
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第11期339-345,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60736005 61006036)资助的课题~~
关键词 热传导 薄膜热导率 ANSYS heat transfer; thermal conductivities of thin films; ANSYS
  • 相关文献

参考文献21

  • 1Kruse P W, Skatrud D D 1997 Uncooled h!frared hnaging Arrays and Systems ( I st Ed.) (San Diego: Academic Press) pp 17-75.
  • 2Greenspan J 1998 MS Dissertation (Montreal: McGill University).
  • 3Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol, 3 183.
  • 4Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530.
  • 5Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. lnstrum. 81 114902.
  • 6Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T. Mehta R J,Karthik C, Ramanath G 2010Appl. Phys. Lett. 96 062107.
  • 7Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901.
  • 8Jain A, Goodson K E 2008 J. Heat Transfer 130 102402.
  • 9Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf 13 159.
  • 10Volklein F 1990 Thin Solid Films 188 27.

同被引文献45

  • 1周桂耀,侯峙云,潘普丰,侯蓝田,李曙光,韩颖.微结构光纤预制棒拉制过程的温度场分布[J].物理学报,2006,55(3):1271-1275. 被引量:6
  • 2程荣军,程玉民.带源参数的热传导反问题的无网格方法[J].物理学报,2007,56(10):5569-5574. 被引量:29
  • 3Zhang L, Zu X T 2006 Acta Phys. Sin. 55 4271 (in Chinese).
  • 4Li X, Hu Y Z, Wang H 2005 Acta Phys. Sin. 54 3787 (in Chinese).
  • 5Zhang S, Bogy D B 1999 Int’l J. Heat and Mass Transfer 42 1791.
  • 6Juang J Y, Bogy D B 2007 ASME J. Tribo. 129 570.
  • 7Chen L, Bogy D B, Strom B 2000 IEEE Trans. Magn. 36 2486.
  • 8Sungtaek J Y 2000 J. Heat Transfer 122 817.
  • 9Liu M Q, Li B C 2008 Acta Phys. Sin. 57 3402 (in Chinese).
  • 10Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese).

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部