摘要
为了优化认知无线电网络中多用户正交频分复用子载波的资源分配,将其转换为一个约束优化问题,进而提出了一种基于混沌免疫优化的求解方法.给出了算法的实现过程和关键技术,设计了适合算法求解的编码、克隆、重组、变异算子.实验结果表明,在满足认知用户速率、所需误码率及干扰约束的条件下,本文所用算法减小了整个系统所需的总发射功率,同时收敛速度较快,能够得到较优的子载波分配方案,进而提高频谱利用效率.
In order to optimize the multi-user subcarrier allocation of cognitive wireless network, it is converted into a constraint optimization problem. A chaotic immune optimization algorithm is proposed to solve it. The key techniques and implementation processes are given. The operators, such as coding, clonal, crossover, and mutation, are designed. The experimental results show that in conditions of user rate, the bit error rate and inference constraints, the algorithm minimizes the total transmit power and converges rapidly. It can obtain the better allocation scheme and improve the utilization efficiency of high frequency spectrum.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第11期527-532,共6页
Acta Physica Sinica
基金
国家高技术研究发展计划(批准号:2009AA12Z210)
国家自然科学基金(批准号:61001202
61003199
61072139)
高等学校博士学科点专项科研基金(批准号:20090203120016
20100203120008)
河南省重点科技攻关项目(批准号:112102210221)
河南省教育厅自然科学研究计划(批准号:2012A520055)资助的课题~~
关键词
免疫优化
认知无线电网络
资源分配
混沌
immune optimization; cognitive radio network; resource allocation; chaotic