期刊文献+

数字线估计表征研究评述 被引量:1

A Review on Researches of Number Line Estimation Representations
下载PDF
导出
摘要 数字线估计是估计数字在线段上的位置。采用行为实验和电生理法研究被试、材料和环境因素对数字线估计的影响,构建了基于对数、等级可变性、线性、幂函数等单一表征的早期模型和幂函数模型及基于多重假说的叠波理论,尽管这些理论都能解释表征的发展特点,但叠波理论能更好地解释数字线估计的心理机制。 Number line estimation is asked to estimate a position on a number line. Researchers use behavioral procedures and electrophysiological methods to investigate influencing factors such as subjects, material and envi- ronment. Early models and power function based on single representation and overlap theory based on multiple rep- resentation. Though these theories can explain the developmental feature of representation, but overlap theory can better explain the number line estimation's psychological mechanism.
出处 《广州大学学报(社会科学版)》 CSSCI 2012年第5期48-51,共4页 Journal of Guangzhou University:Social Science Edition
基金 教育部人文社会科学十一五规划项目(09YJA880023)
关键词 数字线估计 心理表征 表征理论模型 number line estimation mental representation model of representation theory
  • 相关文献

参考文献16

  • 1PETITTO A L. Development of number line and measurement concepts[ J]. Cognition and Instruction, 1990, 7: 55 - 78.
  • 2OPFER J E, THOMPSON C A. The trouble with transfer: Insights from microgenetic changes in the representation of numerical magnitude [ J ]. Child development, 2008, 79(3) : 788 - 804.
  • 3NIEDER A, DEHAENE S. Representation of number in the brain[J]. Annu Rev Neurosci, 2009, 32:185-208.
  • 4EVELYN EGER, VINCENT MICHEL, BERTRAND THIRION, et. al. Deciphering cortical number coding from human brain activity patterns [ J]. Current Biology 2009, 19:1608 - 1615.
  • 5SIEGLER R S, BOOTH J L. Development of numerical estimation in young children [ J ]. Child Development, 2004. 75(2).428-444.
  • 6SIEGLER R S, OPFER J E. The development of numerical estimation: Evidence for multiple representations of numerical quantity[ J]. Psychological Science, 2003, 14 ( 3 ) : 237 - 243.
  • 7PARLETY D. The Oxford history of board games [ M ]. England: Oxford University Press, 1999.
  • 8SIEGLER R S, MU Y. Chinese children excel on novel mathematics problems even before elementary school[ J ]. Psychological Science, 2008, 19:759 - 763.
  • 9GEETHA B, RAMANI R S. Reducing the gap in numerical knowledge between low - and middle - incomepreschoolers [ J ]. Journal of Applied Developmental Psychology, 2011, 32:146 - 159.
  • 10张云仙,司继伟.大学生的认知方式对其估算能力的影响[J].西南师范大学学报(自然科学版),2007,32(3):168-171. 被引量:9

二级参考文献15

  • 1张厚粲,郑日昌.关于认知方式的测验研究——对我国大、中、小学生场依存性特征的调查分析[J].心理科学通讯,1982,5(2):14-18. 被引量:33
  • 2Siegler, R. S., & Robinson, M. (1982). The development of numerical understandings. In H. W. Reese & L.P. Lipsitt (Eds.), Advances in child development and behavior: Vol. 16 (pp. 241-312). New York: Academic Press.
  • 3Booth, J. L. (2005). The importance of an accurate understanding of numerical magnitudes. Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.
  • 4Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189-201.
  • 5Dehaene, S. (1997). The number sense: How the mind creates mathematics (pp:73-76). New York: Oxford University Press.
  • 6Dehaene, S., Izard, V., Spelke, E., & Pica, E (2008). Log or linear? Distinct intuitions of the number scale in Wes~rn and Amazonian indigene cultures. Science, 320(5880), 1217-1220.
  • 7Dowker, A. (2003). Young children's estimates for addition: The zone of partial knowledge and understanding. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 243-265). Mahwah, NJ: USum Associates, Publishers.
  • 8Huntley-Fenner G. (2001). Children's understanding of number is similar to adults' and rats' : Numerical estimation by 5- to 7- year-olds. Cognition; 78(3), B27-40.
  • 9Laski, E. & Siegler, R. S. (2005). Children's number categories and their understanding of numerical magnitude. Unpublished manuscript.
  • 10Opfer, J. E. & Siegler, R. S. (2007). Representational change and children's numerical estimation. Cognitive Psychology, 55, 169-195.

共引文献21

同被引文献14

  • 1陈丽兰,刘鸣,曹景明.儿童估算策略选择研究述评及展望[J].数学教育学报,2009,18(3):83-86. 被引量:13
  • 2Siegler R S, Booth J L. Development of Numerical Estimation in Young Children [J]. Child Development, 2004, 75(2): 428-444.
  • 3Barth H C, Paladino A M. The Development of Numerical Estimation: Evidence Against a Representational Shift [J]. DevelopmentalScience, 2011, 14(1): 125-135.
  • 4Siegler R S. Emerging Minds: the Process of Change in Children's Thinking [M]. New York: Oxford University Press, 1996.
  • 5Opfer J E, Siegler R S. Representational Change and Children's Numerical Estimation [J]. Cognitive Psychology, 2007, 55(38): 169-195.
  • 6Geary D C, Hoard M K, Byrd-Craven J, et al.Cognitive Mechanisms Underlying Achievement Deficits in Children with Mathematical Learning Disability [J]. Child Development, 2007, 78(4): 1 343-1 359.
  • 7Geary D C, Hoard M K, Nugent L, et al. Development of Number Line Representations in Children with Mathematical Learning Disability [J]. Developmental Neuropsychology, 2008, 33(1): 277-299.
  • 8Siegler R S, Opfer J E. The Development of Numerical Estimation: Evidence for Multiple Representations of Numerical Quantity [J]. Psychological Science, 2003, 14(3): 237-243.
  • 9Siegler R S, Ramani B R. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development [J]. Psychological Science, 2008, 11(5): 655-661.
  • 10莫雷,周广东,温红博.儿童数字估计中的心理长度[J].心理学报,2010,42(5):569-580. 被引量:14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部