期刊文献+

明渠湍流中的主要相干结构模式 被引量:12

Coherent structure models for open channel flows
原文传递
导出
摘要 利用自主开发的高帧频明渠湍流粒子图像测速(PIV)系统测量了3种Reynolds数下的恒定均匀流时间序列流场,运用本征正交分解能够给出数据集的最优模态的特性,分析了明渠湍流的主要相干结构模式及其能量关系。湍动能主要集中在少数几个低阶模态上,第1阶模态含有约30%以上的湍动能。Q2(Q4)事件是明渠湍流中除平均流动外含能最多、最主要的大尺度结构,湍动能主要通过Q2(Q4)事件向其他结构传递。它并不完全是发夹涡群诱导的结构,相反从能量的角度来看,发夹涡群的产生与维持与它有关键关系。Q2(Q4)事件可能存在大范围独立维持的大尺度机制。同时本征正交分解(POD)技术成功提取了发夹涡群结构,流向范围达到约3.4h,垂向尺度从交叠层一直到水面附近,整个结构与壁面呈约10°夹角。发夹涡群载有约23%的平均湍动能,并主要集中在处于对数区的中间部分。其他含能较少的大尺度结构有水面涡旋、单双涡结构、独立涡包等。 Instantaneous velocities in open channel flows were measured using high-speed PIV in steady uniform flows at three different Reynolds numbers. Proper orthogonal decomposition (POD) was used to find the optimal models for the turbulence and turbulent coherent structures. The results show that the kinetic energy is concentrated in a few modes with the first mode containing 30% of the total energy. The Qe(Q4) events constitute the most prominent coherent motions in the flow. The Q2 (Q4) events convey kinetic energy to other large-scale structures such as the hairpin vortex packets, but the mechanism of generating and maintaining the Q2(Q4) events remains elusive. Typical hairpin vortex packet structures incline at 10°to the wall, with the stream wise length scale averaging 3.4h while the wall-normal scale ranged from the buffer layer to the free surface. Hairpin vortex packets contain 23% of the turbulent kinetic energy concentrated in the middle part of the structure in the logarithmic layer. Other less energetic large scale structures include vortices near the surface, single and coupled vortex systems, and independent vortex packets.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第6期730-737,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(51127006) 国家“十二五”科技支撑计划项目(2012BAB04B01)
关键词 明渠湍流 大尺度结构 发夹涡群 本征正交分解(POD) 粒子图像测速(PIV) open channel flow large scale structure hairpin vortex packets proper orthogunal decomposition (POD) PIV
  • 相关文献

参考文献25

  • 1Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layers [J]. Journal of Fluid Mechanics, 1967, 30:741 - 773.
  • 2Smith C R, Schwartz S P. Observation of streamwise rotation in the near wall region of a turbulent boundary layer [J]. Physics of Fluids, 1983, 26(3) : 641 - 652.
  • 3Carlier J, Stanislas M. Experimental study of eddy strucures in a turbulent boundary layer using particle image velocimetry [J]. Journal of Fluid Mechanics, 2005, 535:143 - 188.
  • 4Blackwelder R F, Kaplan R E. On the wall structure of the turbulent boundary layer [J]. Journal of Fluid Mechanics, 1976, 76: 89-112.
  • 5Tardu S. Characteristics of single and clusters of bursting events in the inner layer, Part 1: Vita events [J]. F.zperiments in Fluids, 1995, 20(2), 112 - 124.
  • 6Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary [J]. Journal of Fluid Mechanics, 1971, 50:133 - 160.
  • 7Panton R L. Overview of the self-sustaining mechanisms of wall turbulence [J]. Progross in Aerospace Scinences, 2001, 37(4) : 341 - 383.
  • 8Nychas S G, Hershey H C, Brodkey R S. A visual study of turbulent shear flow [J]. Journal of Fluid Mechanics, 1973, 61: 513-540.
  • 9Wu Y, Christensen K T. Population trends of spanwise vortices in wall turbulence[J]. Journal of Fluid Mechanics, 2006, 568: 55-76.
  • 10Zhou J, Adrain R J, Balachandar S, Kendall T M. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353-396.

二级参考文献15

  • 1王殿常,王兴奎,李丹勋.明渠时均流速分布公式对比及影响因素分析[J].泥沙研究,1998,23(3):86-90. 被引量:16
  • 2周丰,孙昭晨,梁书秀.波浪环境中圆形垂向射流的试验研究[J].水利学报,2007,38(8):981-985. 被引量:15
  • 3Meynart R. Equal velocity fringes in a Rayleigh-Benard flow by a speckle method[J]. Appl Opt, 1980,19:1385 - 1386.
  • 4Adrian R J. Scattering particle characteristics and their effect on pulsed laser measurement of fluid flow : speckle velocimetry vs. particle image velocimetry. [ J]. Appl Opt, 1984,23 : 1690 - 1691.
  • 5Kompenhans J, Reichmuth J. Particle imageing velocimetry in a low turbulent wind tunnel and other flow facilities[ A]. Proceedings of the IEEE Montech' 86 conference[ C]. Montreal, Canada, 1986.
  • 6Willert C E, Gharib M. Digital particle image velocimetry[J] .Experiments in Fluids, 1991,10:181 - 193.
  • 7Scarano F, Riethmuller M L. Iterative multigrid approach in PIV image processing with discrete window offset [ J ]. Experiments in Fluids, 1999,26 : 513 - 523.
  • 8Scarano F, Riethmuller M L. Advances in iterative multigrid PIV image processing[J]. Experiments in Fluids[Suppl. ], 2000, S51 - S60.
  • 9Scarano F. herafive image deformation methods in PIV[J]. Meas. Sci. Technol. ,2002,13:1 - 19.
  • 10Wang Xingkui, Qian Ning. Turbulence characteristics of sediment-laden flow[ J ]. Journal of hydraulic Engineering, 1989, 115(6) :781 - 800.

共引文献13

同被引文献84

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部