期刊文献+

用于癌症分子分型的虚拟可重构结构演化硬件 被引量:3

Virtual reconfigurable architecture-based evolvable hardware for molecular classification of cancers
原文传递
导出
摘要 根据DNA微阵列数据维数高、样本少的特点,提出了一种用于癌症分子分型的演化硬件方法.该方法是基于虚拟可重构结构的演化硬件识别方法,具备灵活、高速和自适应能力强的特点,有利于建立一个拥有高数据吞吐能力、学习结果易读的高效分类系统.采用信噪比的方法进行特征选择,对选择的基因经过归一化和二值化,然后用演化硬件识别系统通过系统学习和系统分类2个阶段进行处理.急性白血病分类的硬件实验结果表明:演化硬件的识别率和识别时间分别达到了95.88%和0.12μs. DNA microarray datasets are characterized by high-dimension and limited number of sampies. Thus, an evolvable hardware (EHW) was proposed for the molecular classification of cancers. The virtual reconfigurable architecture-based EHW method has flexibility, high processing speed and self-adaptation ability. These features are useful to build an efficient classification system which provides the high data throughput and the readability of the learned results. For the classification of acute leukemia, the feature selection was based on the signal-to-noise ratio method and the selected normal- ized genes were processed by the EHW classification system through the phases of system learning and system classification. Hardware experimental result shows that the recognition rate and recognition time of the proposed evolvable system for the classification of acute leukemia dataset are 95.88 % and 0.12 μs, respectively.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期23-28,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61075019) 重庆市自然科学基金资助项目(2009BB2080) 教育部留学回国人员科研启动基金资助项目(教外司留[2010]1174号)
关键词 智能系统 模式识别 机器学习 演化算法 可编程逻辑门阵列 intelligent system pattern recognition machine learning evolutionary algorithms fieldprogrammable gate array (FPGA)
  • 相关文献

参考文献2

二级参考文献20

  • 1王友仁,姚睿,朱开阳,黄三傲.仿生硬件理论与技术的研究现状与发展趋势分析[J].中国科学基金,2004,18(5):273-277. 被引量:11
  • 2原亮,丁国良,吴文术,娄建安,赵强.以FPGA和QUARTUS为基础平台的EHW环境实现[J].计算机与数字工程,2006,34(5):1-3. 被引量:6
  • 3Zhang Y, Smith S L, Tyrrell A M. Digital Circuit design using intrinsic evolvable hardware. In: Proceedings of the 6th NASA/DoD Evolvable Hardware Workshop, Seattle, USA, 2004.55-62
  • 4Yao X, Higuchi T. Promises and challenges of evolvable hardware. IEEE Transactions on Systems, Man and Cybernetics-Part C : Applications and Reviews, 1999, 29( 1 ) : 87- 97
  • 5Lee J, Sitte J. Gate-level morphogenetic evolvable hardware for scalabihty and adaptation on FPGAs. In: Proceedings of the 1st NASA/ESA Conference on Adaptive Hardware and Systems, Istanbul, Turkey, 2006. 145-152
  • 6Leitao P. A bio-inspired solution for manufacturing control systems. In: Proceedings of IFIP International Federation for Information Technology for Balanced Automation Systems. US, Boston: Springer, 2008.303-314
  • 7Gajda P, Krawiec K. Evolving a vision-driven robot controller for real-world indoor navigation. In: Proceedings of lecture Notes in Computer Science, Applications of Evolutionary Computing, Heidelberg, Germany. Berlin: Springer, 2008. 184-193
  • 8Zykov V, Mytilinaios E, Desnoyer M, et al. Evolved and Designed Self-Reproducing Modular Robotics. IEEE Transactions on Robotics and Automation, 2007,23(2) :308-319
  • 9Torresen J. A dynamic fitness function apphed to improve the generalisation when evolving a signal processing hardware architecture. In: Proceedings of the Applications of Evolutionary Computing on EvoWorkshops, London, UK, 2002. 267- 279
  • 10Burian A, Takala J. Evolved gate arrays for image restoration. In: Proceedings of Congress on Evolutionary Computation, New Jersey, US, 2004. 1185-1192

共引文献14

同被引文献49

  • 1Golub T R, Slonim D K, Tamayo P, et al. Molecular classi- fication of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999,286 ( 5439 ) : 531-537.
  • 2Shen Q, Shi W M, Kong W, et al. Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Com- putational Biology and Chemistry,2008,32( 1 ) :53-60.
  • 3Sandin I, Andrade G, Viegas F, et al. Aggressive and ef- fective feature selection using genetic programming. In: Proceedings of the IEEE Congress on Evolutionary Com- putation, Brisbane, Australia ,2012.1-8.
  • 4Piao H Y. A correlational Bayesian network for DNA mi- croarray data analysis. In:Proceedings of the International Conference on Biomedical Engineering and Informatics, Shanghai, China,2011. 1702-1705.
  • 5Helman P,Veroff R, Atlas S R, et al. A Bayesian network classification methodology for gene expression data. Jour- nal of Computational Biology,2004,11 (4) : 581-615.
  • 6Tan A C, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinfor- matics,2003,2(2 suppl) :75-83.
  • 7Chao S B, Won H. Cancer classification using ensemble of neural networks with multiple significant gene subsets. Ap- plied Intelligence, 2007,26 ( 3 ) : 243-250.
  • 8Glette K, Torresen J, Yasunaga M. An online EHW pattern recognition system applied to sonar spectrum classifica- tion. In: Proceedings of the International Conference on Evolvable Systems:From Biology to Hardware, Wuhan, China,2007.1-12.
  • 9Wang J,Jung J K,Lee Y M ,et al. Using reconfigurable ar- chitecture-based intrinsic incremental evolution to evolve a character system. In: Proceedings of the International Conference on Computational Intelligence and Security, Xi' an,China,2005. 216-223.
  • 10I Sekanina L, Frienl S. An evolvable combinational unit for FPGAs. Computing and Informatics, 2004,23 ( 5 ) : 461- 486.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部