期刊文献+

基于支持向量回归机的结构非概率可靠性分析 被引量:8

Structural non-probabilistic reliability analysis using support vector regression
原文传递
导出
摘要 将支持向量机回归技术引入隐式极限状态结构的非概率可靠性分析,基于未确知信息的分段均布描述模型,设计了训练样本抽取策略.为了统一样本尺度,根据分段均布模型与标准化区间均布模型的双射关系,将基本变量区域中的样本数据转化成标准区间变量域中的样本数据,保证了支持向量机训练的稳定性.给出了SVR预测模型算法,并实现了在标准化区间变量域中直接抽取训练、测试及预测样本,使得样本抽取和蒙特卡罗模拟计算更便于实现.通过算例对方法的精度和可行性进行了验证,结果表明:该方法可解决隐式极限状态结构的非概率可靠性分析问题,且应用简便. The regression technology of support vector machine(SVM) was introduced to analyze the non-probabilistic reliability of structures with implicit limit state function.Based on the fragment description model of unascertained information,the training data sampling method was proposed.The sample data in basic variable range was transformed to that in norm interval variable scale,and the dimensions of training samples were unified.So the stability of SVM could be assured.The algorithm was offered,and the training,test and prediction sample could be directly drawn in norm interval scales.So the sample drawing and Monte Carlo simulation became easier to realize.The accuracy and feasibility of this methodology were proved through two given examples.The problem of structural non-probabilistic reliability with implicit limit state function can be solved using this technique,and which is easy to use.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期29-32,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 总装备部武器装备预研项目 教育部新世纪优秀人才支持计划资助项目
关键词 可靠性分析 结构可靠性 支持向量回归机 蒙特卡罗 隐式极限状态 非概率可靠性 reliability anaylsis structural reliability support vector regression(SVR) Monte Carlo implicit limit state non-probabilistic reliability
  • 相关文献

参考文献11

  • 1Bucher C G,Bourgund U.A fast and efficient re-sponse surface approach for structural reliabilityproblems[J].Structural Safety,1990,7(1):57-66.
  • 2Deng J,Gu D S,Li S B,et al.Structural reliabilityanalysis for implicit performance functions using arti-ficial neural network[J].Structural Safety,2005,27(1):25-48.
  • 3Hurtado J E,Alvarez D A.Classification approachfor reliability analysis with stochastic finite elementmoeling[J].Journal of Structural Engineering,2003,129(8):1141-1149.
  • 4Hurtado J E.An examination of methods for approxi-mating implicit limit state functions from the view-point of statistical learning theory[J].StructuralSafety,2004,26(3):271-293.
  • 5邓乃扬,田英杰.支持向量机--理论、算法与拓展[M].北京:科学出版社,2009.
  • 6Rocco C M,Moreno J A.Fast Monte Carlo reliability evaluation using support vector machine[J].Reliabil-ity Engineering and System Safety,2002,76(3):237-243.
  • 7李洪双,吕震宙,岳珠峰.结构可靠性分析的支持向量机方法[J].应用数学和力学,2006,27(10):1135-1143. 被引量:27
  • 8李洪双,吕震宙.支持向量回归机在结构可靠性分析中的应用[J].航空学报,2007,28(1):94-99. 被引量:12
  • 9马超,吕震宙.隐式极限状态方程的非概率可靠性分析[J].机械强度,2009,31(1):45-50. 被引量:12
  • 10孙文彩,杨自春.区间参数结构可靠性分析新模型[J].海军工程大学学报,2011,23(3):62-66. 被引量:6

二级参考文献48

  • 1陈永义,俞小鼎,高学浩,冯汉中.处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介[J].应用气象学报,2004,15(3):345-354. 被引量:180
  • 2Elishakoff I. Discussion on: A non-probabilistic concept of reliability[J]. Structural Safety, 1995, 17(3): 195-199.
  • 3Ben-Haim Y. A non-probabilistie measure of reliability of linear systems based on expansion of convex models [ J ]. Structural Safety, 1995, 17 (2) : 91-109.
  • 4刘成立.复杂结构可靠性分析及设计研究[D].西安:西北工业大学,2007:43-95.
  • 5Vapnik V N. The nature of statistical learning theory [ M ]. New York: Springer-Verlag, 1995: 181-195.
  • 6BEN-HAIM Y, ELISHAKOFF I. Convex Models of Uncertainty in Applied Mechanics [M]. Amsterdam: Elsevier Science Publishers, 1990.
  • 7BEN-HAIM Y. A non-probabilistic concept of reliability [J]. Structural Safety, 1994,14(4):227--245.
  • 8ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal's criticisms to modern convex modeling [J].Computers & Structures, 1995,56(6) :871- 895.
  • 9BEN-HAIM Y. Robust Reliability in the Mechanical Sciences [M]. Berlin: Springer-Verlag, 1996.
  • 10BEN HAIM Y. Robust rationality and decisions under severe uncertainty [J]. Journal of the Franklin Institute, 2000,337(2) :171--199.

共引文献48

同被引文献88

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部