期刊文献+

四维欧氏空间中曲线的运动不变特征

ON Motional Invariants of Curves in Euclidean4-Space
下载PDF
导出
摘要 举例证实了经典的Frenet公式所定义的曲线的三个曲率不能唯一确定曲线到一个运动;借助于四维空间中三个向量的向量积运算在正则曲线上构造右手系Frenet标架并重新定义曲线的第三曲率;据此证明四维空间中的运动保持曲线的曲率和挠率不变,但第三曲率当运动含有反射时会改变符号,并证明结论的逆也成立。 In this paper, an example is given to substantiate that the functions k1 (s) k2 (s) k3 (s), which are defined by traditional Frenet formulae, cannot uniquely determine a curve up to a motion. Secondly, the vector product of three vectors in Euclidean 4-space is introduced for mending above-mentioned conclusion. Then it is constructed that the right-hand frame at the normal point of a curve and obtain the new definition of the third curvature for curves in Euclidean 4-space. Finally, it is proved that, under a motion of 4-space, the curvature and torsion of a curve are not changed, but the third curvature can be changed by multiplied -1 when the motion containing reflection, and that the converse of this conclusion also holds.
出处 《广东广播电视大学学报》 2012年第3期104-109,共6页 Journal of Guangdong Radio & Television University
关键词 右手系标架 曲线 曲率 挠率 第三曲率 right-hand frame curvature torsion third curvature
  • 相关文献

参考文献6

二级参考文献3

  • 1Gamkrelidze R V.Geometry I:Basic Ideas and Concepts of Differential Geometry[M].New York:Springer-Verlag,1991.
  • 2Dubrovin B A,Fomenko A T,et al.Modern Geometry-methods and Applications(2nd edition)[M].New York:Springer-Verlag,1992.
  • 3陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,1993.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部