期刊文献+

K杂波下基于Bootstrap的分布式检测 被引量:1

Bootstrap Based Distributed Detector Under Correlated K-Distributed Radar Clutter Background
下载PDF
导出
摘要 传统雷达目标检测算法在相关K分布杂波下虚警概率过高,为此提出了一种基于Bootstrap的分布式检测(BBDD)算法。仿真数据表明,BBDD在相关K分布杂波中的虚警控制能力优于分布式广义符号检测器(DGSD),且K分布杂波形状参数变化对BBDD的虚警概率影响不大,适当增加BBDD脉冲参考单元数可更好地控制虚警概率。同时,为定量控制BBDD虚警概率,分块数据长度选择应根据杂波相关长度与脉冲累积单元数之间大小关系谨慎选择。最后,仿真结果证明了所述方法和相关结论的正确性。 To overcome the high probability of false alarm(PFA) of conventional radar detector under the correlated K-distributed clutter,a bootstrap based distributed detector(BBDD) was proposed in this paper.It has much higher capability to keep CFAR than the distributed generalized sign detector(DGSD) under the correlated K-distributed clutter.Besides,the PFA of BBDD is almost unchanged with the change of K-distribution shape parameter.The PFA of BBDD will decrease with the increase of the size of the reference sample number per pulse.The block size should be carefully chosen according to the correlated length of the clutter and the number of the cumulative pulse.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
出处 《雷达科学与技术》 2012年第2期187-191,共5页 Radar Science and Technology
基金 国家自然科学基金(No.61102160) 全军军事学研究生课题(No.2010JY0423-241)
关键词 Bootstrap检测 分布式检测 相关K分布杂波 恒虚警率(CFAR) Bootstrap detection distributed detection correlated K-distributed clutter constant false alarm ratio(CFAR)
  • 相关文献

参考文献1

二级参考文献8

  • 1张昆辉,朱兆达.非参量量化秩检测器在相关杂波中的性能[J].信号处理,1989,5(2):88-94. 被引量:2
  • 2刘向阳,彭应宁,关键.两种基于局部广义符号统计量的融合准则[J].清华大学学报(自然科学版),2006,46(7):1223-1226. 被引量:1
  • 3方再根.韦伯杂波中雷达非参量检测性能的研究.北京工业学院学报,1982,(2):16-16.
  • 4方再根.雷达非参量检测的蒙特卡洛模拟.北京工业学院学报,1987,(1):69-90.
  • 5朱兆达.秩二进制累积非参量检测器的渐近性能分析.电子学报,1980,8(3):89-98.
  • 6SANZ-GONZLEZ J L,LVAREZ-VAQUERO F.Nonparametric Rank Detectors under K-Distributed Clutter in Radar Applications[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(2):702-710.
  • 7James L,Marier J.Correlated K-Distributed Clutter Generation for Radar Detection and Track[J].IEEE Transactions on Aerospace and Electronic Systems,1995,31(2):568-580.
  • 8赵海云,张瑞永,武楠,胡学成.基于实测数据的海杂波特性分析[J].雷达科学与技术,2009,7(3):214-218. 被引量:6

共引文献4

同被引文献9

  • 1KELLY E J. An Adaptive Detection Algorithm[J].1EEE Trans on Aerospace and Electronic Systems, 1986, 22(2) :115-127.
  • 2ROBEY F C, FUHRMANN D R, KEI.LY E J, et al. A CFAR Adaptive Matched Filter Detector[J3. IEEE Trans on Aerospace and Electronic Systems, 1992, 28 (I) :208-216.
  • 3DE MAIO A. Rao Test for Adaptive Detection in Gaussian Interference with Unknown Covariance Ma- trix[J]. IEEE Trans on Signal Processing, 2007,55 (7) :3577 3584.
  • 4KRAUT S, SCHARF L LI The CFAR Adaptive Sub- space Detector is a Scale-Invariant GLRT[J]. IEEE Trans on Signal Processing, 1999,47(9) :2538 2541.
  • 5BESSON O. Detection in the Presence of Surprise or Undernulled Interference[J]. IEEE Signal Processing Letters, 2007, 14(5) :352-354.
  • 6ORLANDO D, RICCI G. A Rao Test with Enhanced Selectivity Properties in Homogeneous Scenarios [J], IEEE Trans on Signal Processing, 2010, 58(10): 5385-5390.
  • 7LIU W, XIE W, WANG Y. A Wald Test with En- hanced Selectivity Properties in Homogeneous Envi ronments[J]. EURASIP Journal on Advances in Sig- nal Processing, 2013, 2013(14) :1 4.
  • 8RAGHAVAN R S. Performance of the GLRT for Adaptive Vector Subspace Detection[J]. IEEE Trans on Aerospace and Electronic Systems, 1996, 32(4): 1473-1487.
  • 9YANAI H, TAKEUCHI K, TAKANE Y. Projec tion Matrices, Generalized Inverse Matrices, and Singular Value Decomposition [M]. New York: Springer, 2011.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部