基于特征选择的入侵检测方法
摘要
本文提出了一种基于特征选择的超球面支持向量机方法,并将其应用于入侵检测中,有效地去除冗余属性。该方法通过特征选择方法找出最优特征子集,交由超球面支持向量机进行训练,最终生成分类模型。
出处
《福建电脑》
2012年第4期89-91,共3页
Journal of Fujian Computer
参考文献5
-
1Setiono R, Liu H. Chi2:Feature Selection and Dis- cretizafion of Numeric Attributes. Proceedings of the 7th IEEE International Conference on Tools with Arti?cial In- teUigence, 1995.
-
2Hall M A. Correlation-Based Feature Selection for Dis- crete and Numeric Class Machine Learning. Proceedings of the 17th International Conference Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000, 359-366.
-
3Kira K, Rendell L A. The Feature Selection Problem: Traditional Methods and A New Algorithm. Proceedings of the Ninth National Conference on Artificial Intelligence, Menlo Park, CA, USA, 1992, 129-134.
-
4Mukkamala S, Sung A H. Feature Selection for Intrusion Detection Using Neural Networks and Support Vector Ma- chines. Journal of the Transportation Research Board of the National Academies, 2003, 1822:33-39.
-
5Vapnik V N. The Nature of Statistical Learning Theory. New York:Springer Verlag, 1995.
-
1刘永芬,郭躬德,黄杰.新超球面SVM方法及其在入侵检测中的应用[J].微计算机信息,2009,25(33):78-79.
-
2吴希曦,高宏力,燕继明,赵敏,黄柏权,许明恒.基于超球面支持向量机的丝杠故障诊断技术[J].计算机集成制造系统,2010,16(12):2661-2667. 被引量:6
-
3李力.无线传感网中一种基于支持向量机的异常事件检测方案[J].计算机应用与软件,2015,32(2):272-277. 被引量:4
-
4张英锋,马彪,朱愿,张金乐.基于超球面支持向量机的综合传动状态判别[J].吉林大学学报(工学版),2012,42(1):13-18. 被引量:3
-
5高晶,王韶霞.基于Cuboids特征的多类超球面支持向量机动作识别研究[J].廊坊师范学院学报(自然科学版),2012,12(2):29-32.