期刊文献+

具有非整数nef值的高维射影簇的结构

Structures of higher dimensional projective varieties with non-integral nef-values
下载PDF
导出
摘要 设M是仅有Gorenstein有理可分奇点的n维正规射影簇,L是M上的丰富线丛,"是(M,L)的nef值.当n-7<"<n-6时,证明了dimM≤14,并且对dimM=12,13和14的情形,给出了(M,L)的完整结构刻画. Let M be an n dimensional normal projective variety with Gorenstein terminal Q-factorial singularities. Let L be an ample line bundle on M, and τbe the nef-value of (M,L). Assume that n -7 〈 τ 〈 n - 6, then dimM≤ 14. Moreover, the structures of (M,L) are characterized for n = 12,13,and 14.
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2012年第3期236-238,共3页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金项目(61070165) 广东广播电视大学基金项目(0606)
关键词 射影簇 丰富向量丛 nef值态射 projective variety ample line bundle nef-velue morphism
  • 相关文献

参考文献8

  • 1ANDREATFA M. Contractions of gorenstein polarized va- rieties with high nef value [ J ]. Math Ann, 1994, 300 : 669 - 679.
  • 2BELTRAMETI'I M, SOMMESE J. On the adjunction the- oretic classification of polarized varieties [ J ]. J Reine Angew Math, 1992, 427 : 157 - 192.
  • 3FUJITA T. On Kodaira energy and adjoint reduction of polarized manifolds[J]. Manuscre Math, 1992, 75:59 - 84.
  • 4BELTRAMENTI M, SOMMESE J. The adjunction theory of complex projective varieties [ M ]. Berlin : Walter de Gruyter, 1995.
  • 5DEBARRE O. Higher-dimensional algebraic geometry [ M]. New York: Springer-Verlag, 2001.
  • 6FUJITA T. Remarks on quasi-polarized varieties [ J ]. Na- goya Math J, 1989, 115: 105-123.
  • 7MAEDA H. Ramification divisors for branched coverings of Pn[J]. Math Ann, 1982, 116:133-176.
  • 8KAWAMATA Y, MATSUDA K, MATSUKI K. Introduc- tion to the minimal model problem[ J]. Advan Stud Pure Math,2002, 10 : 283 - 360.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部