期刊文献+

图的最小Q-特征值 被引量:1

Least Q-eigenvalue of a graph
下载PDF
导出
摘要 证明了,若连通图G不是二部图,则其最小Q-特征值q(G)≥1/n(D+1),其中D是G的直径.另外,还给出了图G的最小Q-特征值与其子图的最小Q-特征值之间的关系. We showed that: If G is a non-bipartite connected graph, then q(G)≥1/n(D+1) where g(G) is the least Q-eigenvalue of G, and D is the diameter of G. Some relations between the least Q-eigenvalue of G and that of its subgraph were given.
作者 何常香 周敏
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期1-5,共5页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11026147) 上海市创新项目(10YZ99)
关键词 非二部图 Q-特征值 直径 non-bipartite graph Q-eigenvalue diameter
  • 相关文献

参考文献6

  • 1GRONE R, MERRIS R, SUNDER V S. The Laplacian spectrum of a graph[J]. SIAM J Matrix Anal, 1990(2): 218-238.
  • 2CVETKOVIC D, ROWLINSON P, SLOBODAN K S. Signless Laplacians of finite graphs[J]. Linear Algebra Appl, 2007, 423: 155-171.
  • 3CVETKOVIC D, SLOBODAN K S. Towards a spectral theory of graphs based on signless Laplacian II[J]. Linear Algebra Appl, 2010, 432(9): 2257-2272.
  • 4DAS K C. On conjectures involving second largest signless Laplacian eigenvalue of graphs[J]. Linear Algebra Appl, 2010, 432(11): 3018-3029.
  • 5FENG L, LI Q, ZHANG X D. Minimizing the Laplacian spectral radius of trees with given matching number[J]. Linear Multilinear Algebra, 2007, 55: 199-207.
  • 6CARDOSO D M, CVETKOVIC D, ROWLINSON P, et aL A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph[J]. Linear Algebra and its Applications, 2008, 429: 2770-2780.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部