期刊文献+

跳分形过程下延展期权定价(英文) 被引量:3

Pricing extendible option under jump-fraction process
下载PDF
导出
摘要 当标的资产遵循跳分形过程时,构建了延展期权的评估框架.首先,在风险中性环境里,对标的资产发生跳跃次数的收益求条件期望现值,导出了延展一期的看涨期权解析定价公式,并探讨了公式的一些特殊情形.然后,将定价公式延展到M期,该延展期权价值在M趋于无穷极限状态时,将收敛于永久延展期权.提出了一种简单有效的两点外推法求极限.最后,提供数值结果,阐述了定价表达式的简单实用. A valuation framework for extendible options is constructed when the underlying asset obeys a fractional process with jump. Under the risk neutral environment, an analytic formula for the call option with one extendible maturity is derived by solving the expected present value of cashfiow and conditioning jumps for the underlying asset. Moreover, some special cases of the formula are discussed. These results are generalized to the option withMextendible maturity. Its value will converge in the limit to the value of perpetual extendible option as the number of extendible maturity increases to infinite. Extrapolated technique with two points is presented to yield a simple and efficient computation procedure to calculate the limit. Numerical results are provided to illustrate provided that our pricing expressions are easy to implement.
作者 彭斌 彭菲
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期30-40,共11页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(71002098)
关键词 跳分形过程 延展期权 两点外推技术 jump fraction process extendible option extrapolated technique with two points
  • 相关文献

参考文献1

二级参考文献3

  • 1朱海燕,张寄洲.股票价格服从跳—扩散过程的择好期权定价模型[J].上海师范大学学报(自然科学版),2007,36(1):17-21. 被引量:2
  • 2He S, Wang J, Yan J. Semi - martingale and Stochastic Calculus [ M ]. CRC Press, Baca Batoa, 1992.
  • 3Bladt M. , Rydberg H.T. An actuarial approach to option assumption[J]. Insurance: Mathematics and economics, pricing under the physical measure and without market 1998, 22(1 ) ,65 -73.

共引文献1

同被引文献13

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部