期刊文献+

涉及微分多项式及例外函数的正规定则

Normal criterion concerning differential polynomials and omitted functions
下载PDF
导出
摘要 证明了如下的结论:设κ≥2是一个正整数,F是区域D上的一族全纯函数,其中每个函数的零点重级至少是κ,h(z),α_1(z),α_2(z)…,α_κ(z)是D上的不恒为零的全纯函数.假设下面的两个条件也成立:(?)f∈F,(a)在f(z)的零点处,f(z)的微分多项式的模小于h(z)的模;(b)f(z)的微分多项式不取h(z),则F在D上正规. In this paper, we proved: Let k ≥ 2 be a positive integer, 37 be a family of holomorphic functions, all of whose zeros have multiplicities at least k, and let h(z), al(z), a2(z), ..., ak(z) are all nonequivalent to 0 on D. If for any f E 37, the following two conditions are satisfied: (a) f(z) = 0 |f(k) (z) + al (z)f(k-l) (z) +... + ak(z)f(z)| 〈 |h(z) |; (b) f(k)(z)+al(z)f(k-1)(z)+.:.+ak(z)f(z) ≠ h(z),where al(z),aa(z),...ak(z) and f have no common zeros, then 37 is normal on D.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期61-70,共10页 Journal of East China Normal University(Natural Science)
基金 上海市优秀青年基金(slg10015) 国家自然科学基金(11071074)
关键词 全纯函数 微分多项式 正规 holomorphic function differential polynomial normal
  • 相关文献

参考文献1

二级参考文献13

  • 1Pang, X. C., Zalcman, L.: Normal families and shared values. Bull. London Math. Soc., 32,325-331 (2000).
  • 2Zhang, G. M., Sun, W., Pang, X. C.: On the normality of certain king of holomorphic functions. Chin. Ann. Math. Ser. A, 26(6), 765-770 (2005).
  • 3Chang, J. M., Fang, M. L., Zalcman, L.: Normal families of holomorphic functions. Illinois Math. J., 48(1), 319-337 (2004).
  • 4Lucas, F.: Geometrie des polynSmes. J. Ecole Polytech., 46(1), 1-33 (1879).
  • 5Marden, M.: Geometry of Polynomials, American Mathematical Society, Providence, Rhode Island, 1966.
  • 6Pang, X. C.: Bloch's principle and normal criterion. Sci. China Set. A, 32, 782- 791 (1989).
  • 7Zalcman, L.: Normal families: new perspectives. Bull. Amer. Math. Soe. (N.S.), 35, 215-230 (1998).
  • 8Nevo, S.: Applications of Zalcman's lemma to Qm-normal families. Analysis, 21, 289-325 (2001).
  • 9Nevo, S., Pang, X. C., Zalcman, L.: Quasinormality and meromorphic functions with multiple zeros. J. Anal. Math., 101, 1-23 (2007).
  • 10Zalcman, L.: A heuristic principle in complex function theory. Amer. Math. Monthly, 82, 813-817 (1975).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部