期刊文献+

U_(r,s)(sl_2)关于主不可分解模的直和分解

Direct sum decomposition of U_(r,s)(sl_2) about principal indecomposable modules
下载PDF
导出
摘要 描述了限制型双参数量子群U_(r,s)(sl_2)的一类不可约模,构造出U_(r,s)(sl_2)所有的主不可分解模.把Casimir元素的左乘作用看作U_(r,s)(sl_2)到自身的线性变换,得到了Casmir元素作用在U_(r,s)(sl_2)上的极小多项式和U_(r,s)(sl_2)本原幂等元的全部共轭类. This paper described a class of irreducible modules of the restricted two- parameter quantum group Ur,s(sl2), and constructed all its principal indecomposable modules. Finally, the minimal polynomial of the action of the Casimir element on Ur,s(sl2) and all the conjugate classes of the primitive idempotents of Ur,s(sl2) were obtained.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期71-84,96,共15页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10971065) 教育部创新团队基金(PCSIRT) 教育部博士点基金(RFDP)
关键词 Casimir元素 广义特征子空间 主不可分解模 本原幂等元 Casimir element generalized eigenspace indecomposable modules primitive idempotents
  • 相关文献

参考文献15

  • 1JANTZEN J C. Lectures on Quantum Groups[M]. Graduate Studies in Math 6. Providence: Amer Math Soc, 1996.
  • 2KASSEL C. Quantum Groups[M]. Graduate Text in Mathmatics, 155, New York: Springer-Verlag, 1995.
  • 3CONCINI D E, KAC V G. Representations of Quantum Groups at root of 1[C]// CONNES A. Operator Alge- bras, Unitary Representation, Enveloping Algebras, and Invariant Theory(Colloque Dixmier), Proc Paris 1989: Progress in Mathmatics 92. 1990: 471-506.
  • 4BERCERON N, GAO Y, HUN. Drinfel'd doubles and Lusztig's symmetric of two-parameter quantum groups[J]. J Algebra, 2006, 301: 378-405.
  • 5BENKART G, WITHERSPOON S. Representations of two-parameter quanrum groups and Schur-Weyl dual- ity[C]// Hopf algebras: Lecture Notes in Pure and Appl Math 237, New York: Dekker. 2064: 62-92.
  • 6HU N, SHI Q. The two-parameter quantum group of exceptional type G2 and Lusztig symmetries[J]. Pacific J Math, 2007, 230(2): 327-346.
  • 7BAI X, HUN. Two-parameter quantum group of exceptional type E-series ans conves PBW type basis[J]. Algebra Colloq, 2008, 15(4): 619-636.
  • 8BENKART G, WITHERSPOON S. Restricted two-parameter quantum groups[C]// Fields Institute Commu- nications. Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry Providence: Amer Math Soc, 2004, 40: 293-318.
  • 9HU N, WANG X. Conves PBW-type Lyondon basis and restricted two-parameter quantum groups of type B[J]. J Geom Phys, 2010, 60(3): 430-453.
  • 10HU N, WANG X. Conves PBW-type Lyondon basis and restricted two-parameter quantum groups of type G2 [J]. Pacific J Math, 2009, 241(2): 243-273.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部