期刊文献+

动态数据驱动的航班延误预测研究 被引量:6

Research on the Dynamic Data-driven Prediction for Flight Delay
下载PDF
导出
摘要 航班运行过程的动态性导致延误实时预测成为难题,动态数据驱动方法为其提供了一种解决方案.该方法能将航班运行实时数据动态加入延误预测过程中,使预测结果更准确可靠.以预测连续进港航班的降落延误为例,对航班之间的延误传递过程进行分析,建立相应的状态空间模型;给出动态数据驱动的航班延误预测框架及预测过程.在航班运行历史数据上进行的多个实验表明:该方法能获得较高的预测准确度和良好的预测稳定性. Flight delay prediction remains an important research topic due to the dynamics in flight op erating process. To solve this problem dynamic data-driven approach from control area was introduced, where real-time data was collected and injected into the prediction process to get more accurate and reliable result. In case of predicting the landing delays of continuous arrival flights, delay propa- gation was analyzed to establish the corresponding state space model. Then dynamic data-driven pre- diction architecture for flight delay and the prediction steps on this architecture were presented. Several experiments were carried out on the historic flight data to validate the performance of this solution. Results show that: the accuracy is high, and it is not sensitive to the number of continuous arrival flights. Therefore, the solution has good predictive stability and reliability.
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第3期463-466,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家"863"高科技项目(批准号:2006AA12A106) 国家自然科学基金重点项目(批准号:61139002)资助
关键词 动态数据驱动应用系统 航班延误预测 参数估计 数据同化 卡尔曼滤波 dynamic data-driven application system flight delays prediction parameter estimation da- ta assimilation~ Kalman filter
  • 相关文献

参考文献10

  • 1Abdelghany K F, Shah S S, Raina S, et al. A model for projecting flight delays during irregular operation conditions[J]. Journal of Air Transport Manage- ment, 2004, 10(6):385-394.
  • 2AhmadBeygi S, Cohn A, Lapp M. Decreasing airline delay propagation by re-allocating scheduled slack [J]. IIE Transactions, 2010, 42(7):478-489.
  • 3Darema F. Dynamic data driven application systems [R]. NSF Workshop on Dynamic Data Driven Appli- cation Systems, March, 2000.
  • 4Hunter M, Fujimoto R, Suh W, et al. An investiga- tion of real-time dynamic data driven transportation simulation[C]//Proceedings of the 2006 Winter Sim- ulation Conference. Washington, DC, USA: IEEE, 2006:1 414-1 421.
  • 5Huang Y, Seck M D, Verbraeck A. Towards auto- mated model calibration and validation in rail transit simulation[C]//Procedia Computer Science, 2010 : 1 259-1 265.
  • 6Wang Y, Papageorgiou M, Messmer A, et al. An adaptive freeway traffic state estimator [J]. Auto- matica, 2009(45) :10-24.
  • 7Hyatt R, Bansal D, Chakraborty S, et al. Flight cast-an airline flight delay predicting DDDAS[C]//Proceedings of 2007 International Symposium on Dis- tributed Computing and Application to Business, En-gineering and Science. Wuhan China, Hubei Science and Technology Press, 2007:85-88.
  • 8Chen H Y, Wang J D, Xu T. Modeling of flight de- lay state-space model based on genetic EM algorithm EJ]. Transactions of Nanjing University of Aeronau- tics & Astronautics, 2011, 28(3):276-281.
  • 9Kalman R E, Buoy R. New results in linear filtering and prediction problems[J]. Journal of Basic Engi- neering, 1961, 83(1) :95-108.
  • 10Bolviken E, Acklam P J, Christophersen N, et al. Monte carlo filters for non-linear state estimation [J]. Automatica, 2001, 37(2):177-183.

同被引文献42

引证文献6

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部