期刊文献+

一种具有在线参数调整功能的Kalman滤波及其应用 被引量:1

A Kalman Filter with On-Line Parameter Adjustment Functionality and Its Application
下载PDF
导出
摘要 本文提出了一种具有在线调整噪声参数功能的卡尔曼自适应滤波算法及其在船舶导航目标跟踪中的应用。实际中系统噪声和量测噪声的统计特性是动态变化的,但在传统卡尔曼滤波中一般认为系统噪声模型是先验已知的,噪声均值和协方差都是定值,这必然造成滤波效果不理想、目标跟踪精度低甚至出现目标跟踪丢失的问题。针对这种情况,通过在线自适应调整噪声均值和协方差,动态跟踪噪声统计特性的变化,从而提高对目标的跟踪精度。在线实现可以有效地利用系统的部分数据进行更新迭代,减小计算量并且易于工程实现。最后通过船舶目标仿真实验的结果验证了本算法的有效性。 A Kalman filter with on-line parameter adjustment functionality and its application in ship target tracking is proposed. In practical systems, noise statistics has dynamic features. Gennerally, in conventional Kalman filtering, the variances of state and measurement noise are assumed to be fixed and known beforehand. However, this assumption does not hold in practice generally. The Kalman filter without correct information on noise covariances could produce poor performance on filtering. In the worst case,it leads the filter to diverge. In order to overcome this problem, a method which adaptivly ad- justs the noise mean and covariance to track the dynamic noise is proposed,so as to improve the precision of target tracking. Online realization can effectively use part of data to update iteration, which reduces calculation and is easy for engineering realization. Finally, the results of the ship target simulation dem- onstrate the effectiveness of the porposed algorithm.
作者 吴飞
出处 《计算机工程与科学》 CSCD 北大核心 2012年第6期93-96,共4页 Computer Engineering & Science
基金 广东自然科学基金资助项目(8451064101000498)
关键词 在线实现 卡尔曼滤波 目标跟踪 on-line realization Kalman filtering target tracking
  • 相关文献

参考文献4

二级参考文献10

  • 1Bar-Shalom Y, Lie X R. Estimation and Tracking Principles [M]. London: Artech House, Techniques and Software,1993.
  • 2Carrew B, Bellanger P. Identification of optimum filter steady state gain for system with unknown noise parameters [J].IEEE Trans Automatic Control, 1973, 18(60):582-587.
  • 3Mehra R K. On the identification of variance and adaptive Kalman filtering[J]. IEEE Trans Automatic Control, 1970,15(2): 175-184.
  • 4Mehra R K. Approachies to adaptive filtering[J]. IEEE Trans on Automatic Control, 1972, 17:693-698.
  • 5崔希璋 於宗俦 陶本藻.广义测量平差[M].北京:测绘出版社,1992..
  • 6Mohamed H,Schwarz K P.Adaptive Kalman Filtering for INS/GPS[J].Journal of Geodesy,1999,(73):193-203.
  • 7Jia M,Rizos C,Ding X.A New reliability measure for dynamic surveying systems and its applications in dynamic system quality control[A].Proceedings of ION GPS -96[C].Kansas City,USA,1996:1215-1223.
  • 8胡丛玮,姚连璧,周林根.高精度 GPS 动态定位及其精度分析[J].工程勘察,1998(4):51-54. 被引量:10
  • 9胡国荣,欧吉坤.改进的高动态GPS定位自适应卡尔曼滤波方法[J].测绘学报,1999,28(4):290-294. 被引量:56
  • 10胡丛玮,刘大杰.基于方差分量估计原理的自适应卡尔曼滤波及其应用[J].测绘学院学报,2002,19(1):15-18. 被引量:31

共引文献35

同被引文献19

  • 1陈金平,尤政,焦文海.基于星间距离和方向观测的导航卫星自主定轨研究[J].宇航学报,2005,26(1):43-46. 被引量:20
  • 2Kato M,Sasaki S, Tanaka K, et al. The Japanese lunar mis- sion SELENE:Science goals and present status[J]. Advance in Space Research,2008,42(2):294-300.
  • 3Tanaka S,Shiraishi H, Kato M, et al. The science objectives of the SELENE- Ⅱ mission as the post SELENE mission[J]. Advances in Space Research,2008,42(2):394-401.
  • 4Yan Jian-guo, Baur O, Li Fei, et al. Long-wavelength lunar gravity field recovery from simulated orbit and inter-satellite tracking data[J]. Advance in Space Research, 2013,52( 11 ): 1919-1928.
  • 5Eissfeller B, Zink T, Wolf R, et al. Autonomous satellite state determination by use of two-directional links[J]. In- ternational Journal of Satellite Communications, 2000,18 (4 5) :325-346.
  • 6Rudenko S, Otten M, Visser P, et al. New improved orbit solutions for the ERS-1 and ERS-2 satellites[J]. Advances in Space Research,2012,49(8):1229-1244.
  • 7Ardaens J S,D'Amico S,Cropp A. GPS-based relative navi- gation for the Proba-3 formation flying mission[J]. Acta Astronautica, 2013,91 : 341-355.
  • 8Psiaki M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011,34 ( 5 ) 1285-1297.
  • 9Sinha M, Gopinath N S, Malik N K. Lunar gravity field modeling critical analysis and challenges[J]. Advances in Space Research,2010,45(2) :322-349.
  • 10Liu Q, Kikuchi F, Matsumoto K, et al. Error analysis of same-beam differential VLBI technique using two SELENE satellites[J]. Advances in Space Research, 2007,40 ( 1 ) : 51- 57.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部