期刊文献+

基于支持向量机的飞机备件消耗预测研究 被引量:7

Research on the Prediction of Aircraft Spare Parts Consumption Based on Support Vector Machine
下载PDF
导出
摘要 针对影响飞机备件消耗的诸多因子难于在模型中体现的问题,采用支持向量机回归模型,应用于备件的消耗预测。该方法将影响备件消耗的主要因子作为支持向量机预测模型的输入因子,对应的备件消耗量作为输出因子,训练模型,然后输入测试样本进行预测。预测结果表明,相比于GM(1,1)模型和神经网络(ANN)模型,该模型具有较高的预测精度和动态适应性,可为相应的备件保障部门提供科学的决策依据。 In view of the problem that the consuming-related factors of aircrafts'spare parts cant be revealed in the model, support vec- tor machine regression model is applied to predict the consumption of spare parts. In the model, the main factors that affect spare parts" consumption are used as the input factors of support vector machine prediction model, while the corresponding spare parts'consumption as the output factors, and the test samples are input for prediction. The results show that, compared with GM ( 1,1 ) model and (ANN) model, this model has higher prediction accuracy and dynamic adaptability, which can provide references for spare parts management sections.
出处 《长春大学学报》 2012年第6期631-633,共3页 Journal of Changchun University
关键词 备件 支持向量机 消耗预测 spare part support vector machine consuming prediction
  • 相关文献

参考文献5

二级参考文献20

  • 1何浩.科技预测的灰色模型(GM)应用研究[J].图书情报知识,1989,6(1):36-36. 被引量:6
  • 2唐山松,罗丽萍.用回归分析预测农村电气化县的人均用电量[J].中国农村水利水电,1996(11):41-43. 被引量:3
  • 3宋辉,李勇,肖慧鑫,郗铭琦.装备维修中备件需求率的预计方法[J].兵工自动化,2007,26(2):26-27. 被引量:8
  • 4浙江省统计局.浙江省统计年鉴2002年[M].北京:中国统计出版社,2002..
  • 5刘思峰 郭天榜 等.灰色系统理论及其应用(第二版)[M].北京:科学出版社,2000.44-49.
  • 6李建平.装备战场抢修理论与应用[M].兵器工业出版社,2000..
  • 7刘思峰 郭天榜 党耀国 等.灰色系统理论及其应用[M].北京:科学出版社,2000.85-89.
  • 8Stitson M O, Weston J A E,Gammerman A,et al.Theory of Support Vector Machines [R]. Technical Report CSD-TD-96-17 [R]. Royal Holloway,University of London 1996.
  • 9Scholkopf B, Bartlett P, Smola A, et al. Support Vectdr Regression with Automatic Accuracy Control [A].Proceedings of the 8th International Conference on Artificial Neural Networks,Perspectives in Computing[C], Berlin, Springer Verlag. 1998b : 111-166.
  • 10Muller K R,Smola A J, Ratsch G,et al. Predicting time series with support vector machines [A].editors,Artificial Neural Networks-ICANN'97[C].Springer, 1997 : 999-1004.

共引文献109

同被引文献120

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部