摘要
设(X,d)为紧致度量空间,f:X→X连续,K(X)是由X的所有非空紧致子集构成的集族,H是由d所诱导的Hausdorff度量,则(K(X),H)是由X的所有非空紧致子集构成的紧致度量空间,-f:K(X)→K(X)连续,-f(A)={f(x):x∈A}研究了-f的扩张性、点态稳定性、性质p、链可迁(混合)、伪轨跟踪性质,以及这些极限行为在(X,f)与(K(X),-f)之间的内在联系。
Make (X,d) a compact metric space, f:X→X is continuous, K(X) is a set consisting of all non-empty compact subsets of X and H is Hausdorffmeasurement induced by d, so (K(X) ,H) is a compact metric space consisting of all non-empty compact subsets of X, f: K(X)→K(X) is continuous, f(A) = lf(x) /x∈A . We study the expansion, the stability state of points, the property of p, transitive chain ( blended), the properties of false rail track off, and the inner relation of these limit behavior between (X, f) and (K (X),f).
出处
《长春大学学报》
2012年第6期691-693,697,共4页
Journal of Changchun University
关键词
超空间
集值映射
极限行为
hyperspace
set-valued map
limit behavior