期刊文献+

基于L-M算法改进BP网络的信息对抗能力评估 被引量:3

Evaluation of Information Operations Improved BP Networks Based on L-M Algorithm
下载PDF
导出
摘要 在未来密集和复杂的电磁环境中,快速、客观地评估敌我双方的信息对抗能力具有重要的意义。目前通常采用的人工打分方法具有一定的主观性,且周期较长,难于满足战场瞬息万变的需求。提出了一种基于L evenberg-M arquardt算法改进的BP神经网络信息对抗能力评估方法,以某组信息对抗数据为训练数据,对改进BP神经网络进行训练,并进行了验证性的仿真试验。仿真结果表明:改进BP神经网络能客观有效地评估信息对抗能力,较大程度地提高了神经网络的收敛速度、缩短了评估时间。 It is of the utmost importance to evaluate information operations quickly and objectively, the manual scoring method is the most common methods used for assessing it, however the methods are not quite objective, and also difficult to meet the needs of the rapidly changing battlefield conditions. So BP neural network improved by Levenberg-Marquard algorithm is put forward to evaluate the capacity of information operation. After the improved BP network is trained by the data of information operation from certain countries,and the simulation experiments are made. The results show that the improved BP neural network can effectively assess the capacity of information operations and it also can greatly improve the convergence rate of neural networks and shorten the evaluation time.
出处 《火力与指挥控制》 CSCD 北大核心 2012年第5期81-84,共4页 Fire Control & Command Control
关键词 信息对抗.评估 改进BP神经网络 仿真 information operation, evaluation, improved BP neural network, simulation
  • 相关文献

参考文献8

  • 1Jennifer R M,Michael W. Information Operations in Africa:An Overlooked Opportunity[C]//Military Communications Conference, 2009. MILCOM 2009. IEEE Digital Object Identifier,2009.
  • 2Major D A. Yasenchock. Army. Reserve Informa-tion Operations Command Overview [ C ]// Information Assurance Workshop, 2003. IEEE Systems, Man and Cybernetics Society Publication Year, 2003.
  • 3John M D H, John R S, Daniel J R, et al. Anticipation Planning in Information Operations [C]//Systems, Man and Cybernetics, 2000 IEEE International Conference on, 2000.
  • 4Zhao D X,Cui G J, Li Y J,etal. Automatic Shift with 4-parameter of Construction Vehicle Based on Neural Network Model[C]//Robotics, Automation and Mechatronies, 2008 IEEE International Conference on, 2008.
  • 5张媛,孙战,邢宗义,秦勇,贾利民.基于神经网络的某扫雷犁电液伺服系统建模与控制[J].火力与指挥控制,2010,35(4):141-146. 被引量:3
  • 6Yoshifusa I, Cidambi S. Bayesian Decision Theory on Three-layer Neural Networks [ J ]. Neurocomputing 63,2005,52 (4) : 209-228.
  • 7Wang C H, Lin S F. Toward a New Three Layer Neural Network with Dynamical Optimal Training Performance[C]//This paper appears in :Systems, Man and Cybernetics, ISIC. IEEE International Conference, 2007.
  • 8祝金荣,朱东华.基于BP神经网络的信息对抗能力综合评价研究[J].情报杂志,2006,25(2):5-6. 被引量:3

二级参考文献14

  • 1童桦,刘一江,易理刚.神经网络在线学习补偿自适应控制及其应用[J].控制理论与应用,2004,21(4):579-583. 被引量:8
  • 2叶金杰,岑豫皖,潘紫微,甄茂新.回归神经网络辩识电液伺服系统模型与仿真[J].系统仿真学报,2004,16(9):2056-2058. 被引量:10
  • 3侯远龙,王引生.某武器扫雷犁系统模糊自适应控制研究[J].机床与液压,2006,34(6):205-206. 被引量:6
  • 4He S,Sepehri N.Modeling and Prediction of Hydraulic Servo Actuators with Neural Networks[C]//Proceeding of 1999 American Control Conference,1999.San Diego:3708-3712.
  • 5Kang Y,Chu M,Liu Y,et al.An Adaptive Control Using Multiple Neural Networks for the Position Control in Hydraulic Servo System[J].Lecture Notes in Computer Science,2005,3611:291-300.
  • 6Moody J,Darken C.Fast Learning in Networks of Locally tuned Processing Units[J].Neural Computation,1989,2(2):281-284.
  • 7Chen S,Cowan C F N,Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Basis Functions Networks[J].IEEE Trans.Neural Networks,1991,2(2):302-309.
  • 8Norgaard M,Ravn O,Poulsen N K.Neural Networks for Modelling and Control of Dynamic Systems[M].London.Springer-Verlag,2000.
  • 9Department of Defense.Directive.S-3600.1:Information Operations.Washington,DC:U.S.Government Printing Office,1996
  • 10Department of Defense.Joint Pub 3-13:Joint Doctrine for Information Operations.Washington,DC:U.S.Government Printing Office,1998:vii-x

共引文献4

同被引文献19

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部