期刊文献+

Particle Swarm Optimization for the Design of H∞ Static Output Feedbacks

Particle Swarm Optimization for the Design of H∞ Static Output Feedbacks
下载PDF
导出
摘要 The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.
出处 《Journal of Mechanics Engineering and Automation》 2012年第4期221-228,共8页 机械工程与自动化(英文版)
关键词 Reduced order controllers particle swarm optimization Static output feedback H∞ synthesis. 静态输出反馈 粒子群优化 优化设计 PSO算法 输出反馈控制器 凸优化问题 降阶控制器 问题求解
  • 相关文献

参考文献15

  • 1P. Gahinet, P. Apkarian, A linear matrix inequality approach to H~ control, Int. Journal of Robust and Nonlinear Control 4 (1994) 421-448.
  • 2K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, 1996.
  • 3D. Arzelier, E.N. Gryazina, D. Peaucelle, T. Polyak, Mixed LMI/randomized methods for static output feedback control design, in: IEEE American Control Conference, Baltimore, USA, June 2010.
  • 4J.V. Burke, D. Henrion, A.S. Lewis, M.L. Overton, HIFOO-A Matlab package for fixed-order controller design and H~ optimization, in: IFAC Symposium on Robust Control Design, Toulouse, July 2006.
  • 5R.C. Eberhart, J, Kennedy, A new optimizer using parucle swarm theory, in: Proc. of the 6th Int. Symposium on Micromachine and Human Science, Nagoya, Japan, 1995, pp. 39-43.
  • 6G. Calafiore, F. Dabbene, R. Tempo, Radial and uniform distributions in vector and matrix spaces for probabilistic robustness, in: D.E. Miller, L. Qiu (Eds.), Topics in Control and its Applications, Springer, New York, 1999, pp. 17-31.
  • 7G. Calafiore, D. methods for Communications Springer-Verlag, Fabrizio, Probabilistic and randomized design under uncertainty, in: and Control Engineering Series London, 2006.
  • 8Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in: Proc. of the 7th Annual Conf. on Evolutionary Programming, USA, 1998, lap. 591-600.
  • 9I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Information Processing Letters 85 (6) (2003) 317-325.
  • 10F.V. den Bergh, A.P. Engelbrecht, A new locally convergent particle swarm optimiser, in: IEEE Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, 2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部