期刊文献+

广义扩展有限元法及其在裂纹扩展分析中的应用 被引量:24

Generalized extended finite element method and its application in crack growth analysis
下载PDF
导出
摘要 结合广义有限元法(GFEM)和扩展有限元法(XFEM)的特点,提出了一种新的数值方法——广义扩展有限元法(GXFEM)。阐述了广义扩展有限元法的基本原理,对相关公式进行推导,探讨数值实施中需注意的重要问题,给出利用广义扩展有限元法进行断裂分析时应力强度因子的计算方法,编写了广义扩展有限元法程序。通过算例进行了应力强度因子的计算,模拟了结构裂纹的扩展过程。算例结果表明,利用广义扩展有限元法计算裂纹扩展问题,不需要进行过密的网格划分,且网格在裂纹扩展后无需重新剖分,具有相当高的计算精度。 A new numerical method--generalized extended finite element method (GXFEM) is proposed in this paper by combining the generalized finite element method (GFEM) and the extended finite ele-ment method (XFEM). The basic principles of GXFEM are presented in detail and relevant formula is derived. Some important problems in numerical realization are discussed. Then, a method of calculating stress intensity factors (SIF) in the analysis of fracture problems is given by using GXFEM. The GXFEM program to analyze fracture process is compiled. The numerical examples are applied to calculate the SIF and to simulate the crack propagation. The results show that it is not necessary to set frequent grids, or to re-mesh when cracks propagate. In addition,the results are provided with very high accuracy.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第3期427-432,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10972072 11132003 51179064) 国家科技支撑计划课题(2008BAB29B03) 河海大学水文水资源与水利工程科学国家重点实验室专项基金(2009585912)资助项目
关键词 广义扩展有限元法 应力强度因子 裂纹扩展 数值模拟 断裂力学 generalized extended finite element method stress intensity factors crack propagation numerical simulation fracture mechanic
  • 相关文献

参考文献16

  • 1Babushka I, Osborn J E. Generalized finite element methods; their performance and their relation to mixed methods[J]. SIAM Journal for Numerical Analysis, 1983,20(3) : 510-535.
  • 2Strouboulis T,Copps K, Babushka I. The generalized finite element method: an example of its implementa- tion and illustration of its performance[J]. Interna- tional Journal for Numerical Methods in Engineer- ing ,2000,47:1401-1417.
  • 3Babuska I,Banerjee U, Osborn J E. On the principles for the selection of shape functions for the generalized finite element method[J]. Computer Methods in Ap- plied Mechanics and Engineering ,2002,191(49-50) : 5595-5629.
  • 4Babuska I,Banerjee U, Osborn J E. Generalized finite element methods-main ideas, results and perspective [J]. International Journal for Numerical Methods in Engineering, 2004,1 (1) : 67-103.
  • 5Strouboulis T, Zhang L, Babushka I. Generalized fi- nite element method using mesh-based handbooks: application to problems in domains with many voids [J]. Computer Methods in Applied Mechanics and Engineering, 2006,195 :852-879.
  • 6梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 7栾茂田,田荣,杨庆.广义节点有限元法[J].计算力学学报,2000,17(2):192-200. 被引量:21
  • 8Belytschko T,Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999,45:601-620.
  • 9Belytschko T, Moes N, Usui S, et al. Arbitrary dis- continuities in finite elements[J]. International Jour- nal for Numerical Methods in Engineering, 2001, 50:993-1013.
  • 10Belytschko T,Parimi C, Moes N,et al. Structured ex- tended finite element methods for solids defined by implicit surfaces[J]. International Journal for Nu- merical Methods in Engineering, 2003,56 : 609-635.

二级参考文献159

  • 1陈万吉,李勇东.带旋转自由度的精化非协调平面四边形等参元[J].计算结构力学及其应用,1993,10(1):22-29. 被引量:29
  • 2梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 3夏晓舟,章青,李国华,徐道远,刘光焰.模拟不连续介质的非连续有限元法[J].河海大学学报(自然科学版),2005,33(6):682-687. 被引量:6
  • 4周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):211-218. 被引量:38
  • 5[1]Hillerborg A,Modéer M,Peterson P E.Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cem.Concr.Res.,1976,6:773~782.
  • 6[2]Ba(z)ant Z P.Crack band model for fracture of geomaterials[C].Proc.4th Int.Conf.on Numerical Methods in Geomechanics,Z.Eisenstein,ed.,Univ.of Alberta,Edmonton,1982,3:1137~1152.
  • 7[3]Jirásek M,Zimmermann T.Embedded crack model:I.basic formulation[J].International Journal for Numerical Methods in Engineering,2001,50:1269~1290.
  • 8[4]Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].Int.J.Numer.Methods Engrg.,1999,45:601~620.
  • 9[5]Moёs N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131~150.
  • 10[6]Daux C,Moёs N,Dolbow J,Sukumar N,Belytschko T.Arbitrary branched and intersecting cracks with the extended finite element method[J].Int.J.Num.Methods in Eng.,2000,48:1741~1760.

共引文献211

同被引文献186

引证文献24

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部