期刊文献+

以壳聚糖为基质的智能电荷翻转体系用于紫杉醇的高效输送 被引量:1

Chitosan-based Intelligent Charge-reversed System for High Efficiency Delivery of Paclitaxel
原文传递
导出
摘要 通过在羧甲基壳聚糖纳米球(CNP)表面修饰三(2-氨基乙基)胺(TAEA)及2,3-二甲基马来酸酐(DMMA),得到针对肿瘤微酸环境响应的智能电荷翻转体系(CNP:TAEA:DMMA纳米球),并用于难溶性抗肿瘤药物紫杉醇(PTX)的高效输送.结果表明,所制纳米球在正常体液(pH7.4)条件下能保留其负电性(11mV),从而减少被巨噬细胞J774A.1摄取;而在肿瘤部位的微酸环境(pH6.8)下,其表面负电性(34.8mV)可迅速转化为正电性(+5mV),促进被肿瘤细胞LLC摄取,提高肿瘤细胞内的药物浓度.与市售注射剂相比,纳米球展现出良好的生物相容性,对肿瘤细胞杀伤效果也明显提高,其半抑制浓度从11.3降低至4.09g/mL,实现了PTX的高效输送. After modification by tris(2-aminoethyl) amine (TAEA) and 2,3-dimethylmaleic anhydride (DMMA), chitosan nanoparticles (CNP) were endowed with intelligent charge-reversal ability. The fabricated system (CNP-TAEA-DMMA- nanoparticles) was then loaded with insoluble anticancer drug paclitaxel (PTX), and the drug delivery efficiency was tested in vivo. The results showed that PTX-CNP-TAEA-DMMA- nanoparticles were negatively charged (-11 mV) at normal tissue circumstance (pH 7.4) and rarely internalized by J774.1 cells, exhibiting stealth effect to macrophages. Once reaching the cancer site, those nanoparticles could intelligently transform to positive charge (+5 mV) by the low-pH microenvironment in tumor tissue, which could improve tumor cell uptake and accordingly increase the drug concentration at the lesion site. Compared with commercial PTX formulation, the nanoparticles possessed superior biocompatibility and better cytotoxicity (the value of half inhibitory concentration was decreased to 4.09 from 11.3 μg/mL), holding a great potential as efficient anti-cancer drug carrier.
出处 《过程工程学报》 CAS CSCD 北大核心 2012年第3期460-465,共6页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:50703043) 国家重点基础研究发展规划(973)基金资助项目(编号:2009CB930300)
关键词 电荷翻转 紫杉醇 药物载体 壳聚糖纳米球 charge reversal paclitaxel drug carrier chitosan nanoparticle
  • 相关文献

参考文献18

  • 1Xiao K, Luo J T, Fowler W L, et al. A Self-assembling Nanoparticles for Paclitaxel Delivery in Ovarian Cancer [J]. Biomaterials, 2009, 30(30): 6006-6016.
  • 2Danhier F, Feron O, Preat V. To Exploit the Tumor Microenvironment: Passive and Active Tumor Targeting of Nanocarriers for Anti-cancer Drug Delivery [J]. J. Controlled Release, 2010, 148(2): 135-146.
  • 3Peer D, Karp J M, Hong S, et al. Nanocarriers as an Emerging Platform for Cancer Therapy [J]. Nat. Nanotechnol., 2007, 2(12): 751-760.
  • 4Yue Z G, Wei W, Lv P P, et al. Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-based Nanoparticles [J]. Biomacromolecules, 2011, 12(7): 2440-2446.
  • 5Yao H J, Ju R J, Wang X X, et al. The Antitumor Efficacy of Functional Paclitaxel Nanomicelles in Treating Resistant Breast Cancers by Oral Delivery [J]. Biomaterials, 2011, 32(12): 3285-3302.
  • 6Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PEGylated PLGA-based Nanoparticles: In vitro and in vivo Evaluation [J]. J. Controlled Release, 2009, 133(1): 11-17.
  • 7Ashley C E, Carnes E C, Phillips G K, et al. The Targeted Delivery of Multieomponent Cargos to Cancer Cells by Nanoporous Particle-supported Lipid Bilayers [J]. Nat. Mater., 2011, 10(6): 389-397.
  • 8Peppas N A, Langer R. New Challenges in Biomaterials [J]. Science, 1994, 263(5154): 1715-1720.
  • 9Yue Z G, Wei W, You Z X, et al. Iron Oxide Nanotubes for Magnetically Guided Delivery and pH-activated Release of Insoluble Anticancer Drugs [J]. Adv. Funct. Mater., 2011, 21 (18): 3446-3453.
  • 10Lv P P, Wei W, Yue H, et al. Porous Quatemized Chitosan Nanoparticles Containing Paclitaxel Nanocrystals Improved Therapeutic Efficacy in Non-small-cell Lung Cancer after Oral Administration [J]. Biomacromolecules, 2011, 12(12): 4230-4239.

二级参考文献41

  • 1Talmadge J E,Fidler I J,Kurz S G The Pharmaceutics and Delivery of Therapeutic Polypeptides and Proteins[J].Adv.Drug.Del.Rev.,1993,10(2/3):247-299.
  • 2Wang L Y,Ma G H,Su Z G Preparation of Uniform Sized Chitosan Microsphcres by Membrane Emulsification Technique and Application as a Carrier of Protein Drug[J].J.Controlled Release,2005,106(1/2):62-65.
  • 3Shi X Y,Tan T W.Preparation of Chitosan/Ethylcellulose Complex Microcapsule and Its Application in Controlled Release of VitAmin D2[J].Biomaterials,2002,23(23):4469-4472.
  • 4Zhang H,Alsarra I A,Neau S H.An in vitro Evaluation of a Chitosan-containing Multiparticulate System for Macromolecule Delivery to the Colon[J].Int.J.Pharm.,2002,239(1/2):197-205.
  • 5Couvreur P,Blanco-Prieto M J,Puisieux F.Multiple Emulsion Technology for the Design of Microspheres Containing Peptides and Oligopeptides[J].Adv.Drug.Del.Rev.,1997,28(1):85-87.
  • 6Pcrugini P,Ganta I,Pavanetto F.Study on Glycolic Acid Delivery by Liposomes and Microspheres[J].Int.J.Pharm.,2000,196(1):51-61.
  • 7Pan Y,Li Y J,Zhao H Y.Bioadhesive Polysaccharide in Protein Delivery System:Chitosan Nanoparticles Improve the Intestinal Absorption of Insulin in vivo[J].Int.J.Pharm.,2002,249(1/2):139-147.
  • 8Anderson J M,Shive M S.Biodegradation and Biocompatibility of PLA and PLGA Microspheres[J].Adv.Drug Del.Rev.,1997,28(1):5-24.
  • 9Jiang W J,Gupta R K,Deshpande M C,et al.Biodegradable Poly(iactic-co-glyenlic acid) Microparticles for Injectable Delivery of Vaccine Antigens[j].Adv.Drug Del.Rev.,2005,57(3):391-410.
  • 10Tamber H,Johansen P,Merkle H P,et al.Formulation Aspects of Biodegradable Polymeric Microspheres for Antigen Delivery[J].Adv.Drug Del.Rev.,2005,57(3):357-376.

共引文献18

同被引文献19

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部