期刊文献+

Effects of Supports and Promoter Ag on Pd Catalysts for Selective Hydrogenation of Acetylene 被引量:2

Effects of Supports and Promoter Ag on Pd Catalysts for Selective Hydrogenation of Acetylene
原文传递
导出
摘要 SiO2,α-Al2O3,γ-Al2O3,ZrO2 and CeO2 were used as supports and Ag as promoter to study their effects on Pd catalysts for selective hydrogenation of acetylene.The catalysts were prepared by impregnated synthesis and characterized by XRD,BET and TEM.The catalytic reaction was carried out in a fixed-bed reactor.Overall,the low specific surface area supports were better to increase the ethylene selectivity at high conversion rate of acetylene.Among the four Pd catalysts on low specific surface area supports,the catalyst on low specific surface area SiO2(LSA-SiO2) retained a high ethylene selectivity even at complete conversion,while the other catalysts showed significant decrease in the selectivity at complete conversion.The performance of Pd/LSA-SiO2 was important to decrease the loss of ethylene in selective hydrogenation of trace acetylene in ethylene.Addition of Ag to Pd/LSA-SiO2 significantly decreased the formation of ethane,C4 alkenes and green oil,and improved the ethylene selectivity to 90% when Pd:Ag=1:1 and 1:3(ω).When the ratio of Pd to Ag was above 1,the activity of Pd-Ag bimetallic catalyst was similar to that of Pd monometallic catalyst,and the selectivity of ethylene increased with increasing of amount of Ag.When the ratio of Pd to Ag was below 1,the activity of bimetallic catalyst decreased with increasing of amount of Ag,while the selectivity of ethylene was kept unchanged.The optimum temperature was 200-230℃ for 0.02%(ω)Pd-0.02%(ω)Ag/LSA-SiO2 to give a high ethylene selectivity and low formation of green oil. SiO2, α-Al2O3, γ-Al2O3, ZrO2 and CeO2 were used as supports and Ag as promoter to study their effects on Pd catalysts for selective hydrogenation of acetylene. The catalysts were prepared by impregnated synthesis and characterized by XRD, BET and TEM. The catalytic reaction was carried out in a fixed-bed reactor. Overall, the low specific surface area supports were better to increase the ethylene selectivity at high conversion rate of acetylene. Among the four Pd catalysts on low specific surface area supports, the catalyst on low specific surface area SiO2 (LSA-SiO2) retained a high ethylene selectivity even at complete conversion, while the other catalysts showed significant decrease in the selectivity at complete conversion. The performance of Pd/LSA-SiO2 was important to decrease the loss of ethylene in selective hydrogenation of trace acetylene in ethylene. Addition of Ag to Pd/LSA-SiO2 significantly decreased the formation of ethane, C4 alkenes and green oil, and improved the ethylene selectivity to 90% when Pd:Ag=1:1 and 1:3(0). When the ratio of Pd to Ag was above 1, the activity of Pd-Ag bimetallic catalyst was similar to that of Pd monometallic catalyst, and the selectivity of ethylene increased with increasing of amount of Ag. When the ratio of Pd to Ag was below 1, the activity of bimetallic catalyst decreased with increasing of amount of Ag, while the selectivity of ethylene was kept unchanged. The optimum temperature was 200-230 ℃for 0.02%(ω)Pd-0.02%(ω)Ag/LSA-SiO2 to give a high ethylene selectivity and low formation of green oil.
出处 《过程工程学报》 CAS CSCD 北大核心 2012年第3期489-496,共8页 The Chinese Journal of Process Engineering
关键词 selective hydrogenation support effect ACETYLENE specific surface area PD AG selective hydrogenation support effect acetylene specific surface area Pd Ag
  • 相关文献

参考文献2

二级参考文献25

共引文献7

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部