期刊文献+

强流电子束入射弯曲宏观石英管的导向效应研究 被引量:1

Guiding Effect of Bended Macroscopic Quartz Tube for High Current Electron Beam
原文传递
导出
摘要 研究了强流(~129 nA)、高能(1 500~1 900 eV)电子束在大角度(9°)弯曲宏观石英管中的导向效应。实验分别测量了入射流强及能量对出射电子角分布值(FWHM)和传输效率的影响。实验观察到出射电子角分布FWHM随着入射电子流强和入射电子能量增加变化均不明显;发现电子传输效率随入射流强增加而增加,但随入射能量增加而减小,这与高电荷态离子导向中离子传输效率随入射能量增加而增加的现象相反。分析发现,与高电荷态离子导向机制不同,电子束导向并非是由电子在石英管内壁的自组织充电过程引起的,而是入射电子与管内壁弹性和非弹性散射碰撞共同作用的结果。 By using an incident electron beam with the high current and high energy, the guiding effect of the bended macroscopic quartz tube for the electron beam has been investigated. The angular distributions of outgoing electrons depending on the current and energy of incident electrons were measured. The de- pendences of electron transmitted fraction on energy and current of incident electrons are also shown. As the incident electron energy increasing, the electron transmitted fraction increases, but it decreases while the incident electron current increasing. The results have been compared with the present data. This work presents, the process of guiding electrons is essentially different from that of guiding highly charged ions, the guiding electron beam was caused by both elastic and inelastic collisions between electrons and inner walls of quartz tube, rather than self-organized charging effect on the surface of inner wall of quartz tube.
出处 《原子核物理评论》 CAS CSCD 北大核心 2012年第2期184-188,共5页 Nuclear Physics Review
基金 国家自然科学基金资助项目(10775160) 国家重点基础研究发展计划项目资助(973计划)(2010CB832900)~~
关键词 电子束 弯曲石英管 角分布 传输效率 electron beam bended quartz tube angular distribution transmitted fraction
  • 相关文献

参考文献19

  • 1STOLTERFOHT N, BREMER J H, HOFFMANN V, etal. Phys Rev Lett, 2002, 88: 133201.
  • 2YAMAZAKI Y, NINOIMYA S, KOIKE F, etal. J Phys Soc Jpn, 1996, 65: 1199.
  • 3SAHANA M B, SKOG P, VIKOR G, et al. Phys Rev A, 2006, 73: 040901.
  • 4MATI-FI TEMPFLI S, MATI-FI-TEMPFLI M, PRIAUX L, etal. Nanotechnology, 2006, 17: 3915.
  • 5STOLTERFOHT N, HELLHAMMER R, BUNDESMANNJ, etal. PhysRevA, 2007, 76: 022712.
  • 6SCHIESSL K, PALFINGER W, LEMELL C, et al. Phys Rev A, 2005, 72, 062902.
  • 7SCHIESSL K, PALFINGER W, LEMELL C, et al. Nucl Instr and Meth B, 2005, 232: 228.
  • 8SKOG P, ZHANG H Q, SCHUCH R. Phys Rev Lett, 2008, 101: 223202.
  • 9MILOSAVLJEVIC A R, VIKOR G, PESIC Z D, et al. Phys Rev A, 2007, 75: 030901.
  • 10DAS S, DASSANAYAKE B S, WINKWORTH M, et al. Phys Rev A, 2007, 76: 042716.

二级参考文献23

  • 1Stolterfoht N, Bremer J H, Hoffmann R, et al. Phys Rev Lett, 2002, 88: 133 201.
  • 2Schiessl K, Palfinger W, Lemell C, et al. Nucl Instr and Meth, 2005,B232: 228.
  • 3Lemell C, Schiessl K, Nowotny H, et al. Nucl Instr and Meth, 2007, B256:66.
  • 4Schiessl K, Palfinger W, Tokesi K, et al. Nucl Instr and Meth, 2007, B258: 150.
  • 5Schiessl K, Palfinger W, Tokesi K, et al. Phys Rev, 2005, A72:062 902.
  • 6Stolterfoht N, Hellhammer R, Bundesmann J, et al. Phys Rev, 2007, A76:022 712.
  • 7Stolterfoht N, Hellhammer R, Pesic Z D, et al. Vacuum, 2004, 73: 31.
  • 8Vikor Gy, Rajendra Kumar R D, Pesic Z D, et al. Nucl Instr and Meth, 2005, B233: 218.
  • 9Skog P, Soroka I L, Johansson A, et al. Nucl Instr And Meth, 2007, B258: 145.
  • 10Vokhmyanina K A, Zhilyakov L A, Kostanovsky A V, et al. J Phys: Meth Gen, 2006, A39:4 775.

共引文献6

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部