期刊文献+

基于相位叠合的不变特征提取 被引量:1

Invariant feature detection based on phase congruency
下载PDF
导出
摘要 文中给出一种适应于图像多种特征(阶跃边缘,线条,屋脊边缘以及马赫带等)的特征提取方法。这种方法利用图像傅里叶分量在特征点叠合次数最多的概念(相位叠合),利用相位叠合来标记特征点比用梯度方法有明显的优点:相位叠合是一种无量纲的量,而且对图像的亮度或对比度是不变的,因此它能提供对特征点的绝对度量。实验证明,相位叠合提取特征对图像的照度(或对比度) In this paper, a kind of feature extraction method suitable for a variety of features (step edge, line, roof edge, Mach band etc) is presented. This method makes use of the concept which Fourier components have maximum congruency at feature points (phase congruency). And using phase congruency for marking features has significant advantages over gradient based methods. It is a dimentionless quality that is invariant to changes in image brightness or contrast, hence it provides an absolute measure of the significance of feature point. Experimental results prove that extracted features using phase congruency is invariant to image illuminance (or contrast) and noise. \;
出处 《红外与激光工程》 EI CSCD 2000年第1期17-21,共5页 Infrared and Laser Engineering
关键词 相位叠合 特征提取 图像处理 Phase congruency\ \ Local energy model\ \ Invariant feature extract
  • 相关文献

参考文献6

  • 1[1]Canny J F. A computational approach to edge detection. IEEE Trans. PAMI-8(6). 1987, 167~187
  • 2[2]Morrone M C & Owens R A. Feature detection from local energe. Pattern Recognition Letter. 1987, 6:303~313
  • 3[3]Owens R A, Venkatesh S & Rose J. Edge detection is a projection Pattern Recognition Letter. 1989, 9:223~244
  • 4[4]Venkatesh S & Owens R A. An energy feature detection scheme ICCV. Singapore. 1989, 553~557
  • 5[5]Field D J. Relations between the statistics of natural images and the response properties of cortical cells. J.Opt.Soc.Am.A. 1987, 4(12):2379~2394
  • 6[6]Robbin B. 2D feature detection via local energy. Image and Vision Computing, 1997, 15:353~368

同被引文献11

  • 1Zhao W, Chellappa R, Phillips P J, et al.Face recognition: a literature survey[J].ACM Computing Surveys,2003,35 (4) :399-458.
  • 2Huang J, Yuen P C, Chen W S, et al.Kernel subspace LDA with optimized kernel parameters on face recogni- tion[C]//Proceedings of the IEEE International Confer- ence on Automatic Face and Gesture Recognition,2004: 327-332.
  • 3Chen X, Flynn P J, Bowyer K W.IR and visible light face recognition[J].Computer Vision and Image Under- standing, 2005,99(3) : 332-358.
  • 4Samal A, Iyengar P A.Automatic recognition and analy- sis of human faces and facial expressions: a survey[J]. Pattern Recognition, 1992,25 ( 1 ) : 65-77.
  • 5Gundimada S, Asari V K, Gudur N.Face recognition in multi-sensor images based on a novel modular feature selection technique[J].Information Fusion, 2010, 11 : 124-132.
  • 6Morrone M C, Owens R.Feature detection from local en- ergy[J].Pattern Recognition Letters, 1987,6 ( 5 ) : 303-313.
  • 7Gomukkal R, Asari K V.An improved face recognition technique based on modular PCA approach[J].Pattern Rec- ognition Letters, 2004,25 (4) : 429-436.
  • 8Jing Xiaoyuan, Zhang David.Face recognition based on linear classifiers combination neurocomputing[J].Neuro- computing, 2003,50: 485-488.
  • 9Phillips P J,Moon H,Rizvi S A,et al.The FERET eval- uation methodology for face-recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 0) : 1090-1104.
  • 10Martinez A M, Benavente R.The AR face database[R]. Purdue University, 1998.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部