摘要
讨论柔性臂的端点角速度反馈控制问题。通过对系统特征值和特征函数的渐近表示式的进一步研究 ,用特征扰动的 Payley- Wiener稳定性理论 ,证明了该系统的最优指数衰减率可由系统的谱来确定。
The problem of angular velocity feedback control caused by a flexible beam on a vibrating system is discussed. The stability is well known, but the optimal exponential decay rate on the system is new. In order to determine the decay rate, an assistant system as a basic system is introduced, and the system is considered as a perturbation of the assistant system. By the Payley-Wiener stability theory, it is proved that a set of the eigenvectors of the system form a Riesz basis of the state space. So the spectrum of the system is determined, and the optimal decay rate can be determined by the spectrum of the system.
出处
《控制与决策》
EI
CSCD
北大核心
2000年第2期141-144,共4页
Control and Decision
基金
国家自然科学基金项目!(69674 0 11)
山西省自然科学基金项目!(9810 0 1)
关键词
最优指数衰减率
柔性振动系统
角速度
反馈控制
Euler-Bernoulli beam, Riesz basis, exponential stability, optimal exponential decay rate