期刊文献+

基于样条函数的光滑支持向量机模型 被引量:11

Smooth support vector machine model based on spline functions
原文传递
导出
摘要 应用光滑函数改进支持向量机模型,得到无约束条件、可微的二次规划问题,从而可以采用快速的最优化算法求解光滑支持向量机模型.提出了一种广义三弯矩方法,用这个方法构造出新的五次样条光滑函数和七次样条光滑函数.证明了上述两个样条光滑函数的逼近精度均高于已有的各种光滑函数;基于上述两个样条函数的光滑支持向量机模型的收敛精度也高于已有的各种光滑支持向量机模型. Differentiable and unconstrained quadratic programming can be constructed by improving a support vector machine (SVM) model using a smooth function, and thus a lot of fast optimization algorithms can be applied to solve the smooth SVM model. A new five-order spline function and a new seven-order spline function were constructed by a general three-moment method. These two spline functions are proved that their approximation accuracy is better than any other smooth functions, and the convergence accuracy of the spline function SVM model based on the five-order spline or seven-order spline is higher than any other smooth SVM models.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第6期718-725,共8页 Journal of University of Science and Technology Beijing
关键词 支持向量机 样条 分类 数值方法收敛性 support vector machines splines classification convergence of numerical methods
  • 相关文献

参考文献11

  • 1Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer Verlag, 1995.
  • 2Platt J. Sequential minimal optimization: a fast algorithm for train- ing support vector machines//Advances in Kernel Methods-Support Vector Learning. Massachusetts: MIT Press, 1999 : 185.
  • 3Mangasarian O L, Musicant D R. Making large-scale support vec- tor machine learning practical// Advances in Kernel Methods-Sup- port Vector Learning. Massachusetts: MIT Press, 1999:169.
  • 4Mangasarian 0 L, Musicant D R. Successive overrelaxation for support vector machines. IEEE Trans Neural Networks, 1999, 10 (5) : 1032.
  • 5Suykens J A K, Vandewalle J. Least squares support vector ma- chine classifiers. Neural Process Lett, 1999, 9 (3) : 293.
  • 6Lee Y J, Mangasarian 0 L. SSVM: a smooth support vector ma- chine for classification. Comput Optim Appl, 2001, 20( 1 ) : 5.
  • 7熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 8熊金志,袁华强,彭宏.多项式光滑的支持向量机一般模型研究[J].计算机研究与发展,2008,45(8):1346-1353. 被引量:17
  • 9Yuan Y, Fan W, Pu D. Spline function smooth support vector ma- chine for classification. J lnd Manage Optim, 2007, 3 (3) : 529.
  • 10Mangasarian 0 L. Generalized support vector machines // Ad- vances in Large Margin Classifiers. Massachusetts: MIT Press, 2000:135.

二级参考文献19

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2王剑,林福宗.基于支持向量机(SVM)的数字音频水印[J].计算机研究与发展,2005,42(9):1605-1611. 被引量:12
  • 3熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 4李春花,凌贺飞,卢正鼎.基于支持向量机的自适应图像水印技术[J].计算机研究与发展,2007,44(8):1399-1405. 被引量:17
  • 5C Chen, O L Mangasarian. A class of smoothing functions for nonlinear and mixed complementarity problems [ J ]. Computational Optimization and Application, 1996,5:97- 138.
  • 6C Chen,O L Mangasarian. Smoothing methods for convex inequalities and linear complementarity problems[ J]. Mathematical Programming, 1995,71:51 - 69.
  • 7O L Mangasarian.Mathematical programming in meural networks [J]ORSA Journal on Computing, 1993,5(4) :349 - 360.
  • 8Y J Lee,O L Mangasarian.SSVM:A smooth support vector machine for classification[ J]. Computational Optimization and Applications,2001,22(1):5 - 21.
  • 9Y J Lee,W F Hsieh, C M Huang. ε-SSVR:A smooth support vector machine for E-insensitive regression[ J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(5):5 - 22.
  • 10J Platt. Sequential minimal optimization: A fast algorithm for training support vector machines [ A]. Advances in Kemel Methods-Support Vector Learning[ C]. Cambridge, MA: MTT Press, 1999.185 -208.

共引文献88

同被引文献74

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部