摘要
考虑了同时具有状态和输入时滞线性定常系统的 H∞镇定问题 .基于动态耗散理论和微分对策原理 ,通过采用带积分项的储存函数 ,对系统的状态反馈控制器和基于观测器的输出反馈设计问题进行了处理 .它们的可解充分条件可以化为与时滞相关的矩阵不等式和Riccati方程的形式 .得到的与时滞相关的状态反馈控制律和基于观测器的输出反馈控制律都能使闭环系统内稳且具有 H∞ 干扰衰减 .
This paper considers the H ∞ stabilization problems for plants with both state delay and control delay.Based on dissipative dynamical system theory and differential game principle,a quadratic storage function with integral items which include the past memory information during the delay span is employed to design H ∞ state feedback controller and observer based H ∞ output feedback controller.These two problems are converted to mathematical problems of solving some matrix inequalities and Riccati equations which are dependent on the time delays.Besides,the controller laws can make the closed systems intenally stable and guarantee disturbance attenuation.
出处
《自动化学报》
EI
CSCD
北大核心
2000年第2期245-249,共5页
Acta Automatica Sinica
关键词
时滞系统
状态反馈
观测器
微分对策
输出反馈
Time delay systems, H~∞ control, disturbance attenuation, differential game,dissipation inequality, linear matrix inequality.